高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于M-estimator与可变遗忘因子的在线贯序超限学习机

郭威 徐涛 于建江 汤克明

郭威, 徐涛, 于建江, 汤克明. 基于M-estimator与可变遗忘因子的在线贯序超限学习机[J]. 电子与信息学报, 2018, 40(6): 1360-1367. doi: 10.11999/JEIT170800
引用本文: 郭威, 徐涛, 于建江, 汤克明. 基于M-estimator与可变遗忘因子的在线贯序超限学习机[J]. 电子与信息学报, 2018, 40(6): 1360-1367. doi: 10.11999/JEIT170800
GUO Wei, XU Tao, YU Jianjiang, TANG Keming. Online Sequential Extreme Learning Machine Based on M-estimator and Variable Forgetting Factor[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1360-1367. doi: 10.11999/JEIT170800
Citation: GUO Wei, XU Tao, YU Jianjiang, TANG Keming. Online Sequential Extreme Learning Machine Based on M-estimator and Variable Forgetting Factor[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1360-1367. doi: 10.11999/JEIT170800

基于M-estimator与可变遗忘因子的在线贯序超限学习机

doi: 10.11999/JEIT170800
基金项目: 

国家自然科学基金(61603326, 61379064, 61273106)

Online Sequential Extreme Learning Machine Based on M-estimator and Variable Forgetting Factor

Funds: 

The National Natural Science Foundation of China (61603326, 61379064, 61273106)

  • 摘要: 该文针对时变离群值环境下的在线学习问题,提出一种基于M-estimator与可变遗忘因子的在线贯序超限学习机算法(VFF-M-OSELM)。VFF-M-OSELM以在线贯序超限学习机模型为基础,通过引入一种更加鲁棒的M-estimator代价函数来替代传统的最小二乘代价函数,以提高模型对于离群值的在线处理能力和鲁棒性。同时VFF-M-OSELM通过融合使用一种新的可变遗忘因子方法进一步增强了其在时变环境下的动态跟踪能力和自适应性。仿真实例验证了所提算法的有效性。
  • LUGHOFER E. On-line active learning: A new paradigm to improve practical useability of data stream modeling methods[J]. Information Sciences, 2017, 415(1): 356-376. doi: 10.1016/j.ins.2017.06.038.
    ZHANG Q, ZHANG P, LONG G, et al. Online learning from trapezoidal data streams[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(10): 2709-2723. doi: 10.1109/TKDE.2016.2563424.
    LIANG N Y, HUANG G B, SARATCHANDRAN P, et al. A fast and accurate online sequential learning algorithm for feedforward networks[J]. IEEE Transactions on Neural Networks, 2006, 17(6): 1411-1423. doi: 10.1109/TNN.2006. 880583.
    HUANG G B, ZHU Q Y, and SIEW C K. Extreme learning machine: Theory and applications[J]. Neurocomputing, 2006, 70(1): 489-501. doi: 10.1016/j.neucom.2005.12.126.
    LU X, ZHOU C, HUANG M, et al. Regularized online sequential extreme learning machine with adaptive regulation factor for time-varying nonlinear system[J]. Neurocomputing, 2016, 174(1): 617-626. doi: 10.1016/j.neucom.2015.09.068.
    WANG X and HAN M. Online sequential extreme learning machine with kernels for nonstationary time series prediction [J]. Neurocomputing, 2014, 145(12): 90-97. doi: 10.1016/ j.neucom.2014.05.068.
    WANG X and HAN M. Improved extreme learning machine for multivariate time series online sequential prediction[J]. Engineering Applications of Artificial Intelligence, 2015, 40(4): 28-36. doi: 10.1016/j.engappai.2014.12.013.
    HUYNH H T and WON Y. Regularized online sequential learning algorithm for single-hidden layer feedforward neural networks[J]. Pattern Recognition Letters, 2011, 32(14): 1930-1935. doi: 10.1016/j.patrec.2011.07.016.
    SUN L, CHEN B, TOH K A, et al. Sequential extreme learning machine incorporating survival error potential[J]. Neurocomputing, 2015, 155(5): 194-204. doi: 10.1016/j. neucom.2014.12.029.
    SUN J, FUJITA H, CHEN P, et al. Dynamic financial distress prediction with concept drift based on time weighting combined with Adaboost support vector machine ensemble[J]. Knowledge-Based Systems, 2017, 120(C): 4-14. doi: 10.1016/ j.knosys.2016.12.019.
    郭威, 徐涛, 汤克明, 等. 具有广义正则化与遗忘机制的在线贯序超限学习机[J]. 控制与决策, 2017, 32(2): 247-254. doi: 10.13195/j.kzyjc.2015.1385.
    GUO Wei, XU Tao, TANG Keming, et al. Online sequential extreme learning machine with generalized regularization and forgetting mechanism[J]. Control and Decision, 2017, 32(2): 247-254. doi: 10.13195/j.kzyjc.2015.1385.
    CELAYA E and AGOSTINI A. Online EM with weight-based forgetting[J]. Neural Computation, 2015, 27(5): 1142-1157. doi: 10.1162/NECO_a_00723.
    LIM J, LEE S, and PANG H. Low complexity adaptive forgetting factor for online sequential extreme learning machine (OS-ELM) for application to nonstationary system estimations[J]. Neural Computing and Applications, 2013, 22(3-4): 569-576. doi: 10.1007/s00521-012-0873-x.
    SOARES S G and ARAUJO R. An adaptive ensemble of on-line Extreme Learning Machines with variable forgetting factor for dynamic system prediction[J]. Neurocomputing, 2016, 171(C): 693-707. doi: 10.1016/j.neucom.2015.07.035.
    GOLUB G H and VAN LOAN C F. Matrix Computations[M]. Baltimore: JHU Press, 2012: 65.
    BARRETO G A and BARROS A. A robust extreme learning machine for pattern classification with outliers[J]. Neurocomputing, 2016, 176(C): 3-13. doi: 10.1016/j.neucom. 2014.10.095.
    ROUSSEEUW P J and LEROY A M. Robust Regression and Outlier Detection[M]. New York: John Wiley Sons, 2005: 43-44.
    PEREZ-SANCHEZ B, FEONTENLA-ROMERO O, GUIJARRO-BERDINAS B, et al. An online learning algorithm for adaptable topologies of neural networks[J]. Expert Systems with Applications, 2013, 40(18): 7294-7304. doi: 10.1016/j.eswa.2013.06.066.
    ZHOU X, LIU Z, and ZHU C. Online regularized and kernelized extreme learning machines with forgetting mechanism[J]. Mathematical Problems in Engineering, 2014, 2014(1): 1-11. doi: 10.1155/2014/938548.
  • 加载中
计量
  • 文章访问数:  1695
  • HTML全文浏览量:  182
  • PDF下载量:  123
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-08
  • 修回日期:  2018-01-16
  • 刊出日期:  2018-06-19

目录

    /

    返回文章
    返回