高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

融合局部纹理和形状特征的人脸表情识别

胡敏 滕文娣 王晓华 许良凤 杨娟

胡敏, 滕文娣, 王晓华, 许良凤, 杨娟. 融合局部纹理和形状特征的人脸表情识别[J]. 电子与信息学报, 2018, 40(6): 1338-1344. doi: 10.11999/JEIT170799
引用本文: 胡敏, 滕文娣, 王晓华, 许良凤, 杨娟. 融合局部纹理和形状特征的人脸表情识别[J]. 电子与信息学报, 2018, 40(6): 1338-1344. doi: 10.11999/JEIT170799
HU Min, TENG Wendi, WANG Xiaohua, XU Liangfeng, YANG Juan. Facial Expression Recognition Based on Local Texture and Shape Features[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1338-1344. doi: 10.11999/JEIT170799
Citation: HU Min, TENG Wendi, WANG Xiaohua, XU Liangfeng, YANG Juan. Facial Expression Recognition Based on Local Texture and Shape Features[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1338-1344. doi: 10.11999/JEIT170799

融合局部纹理和形状特征的人脸表情识别

doi: 10.11999/JEIT170799
基金项目: 

国家自然科学基金项目(61672202, 61432004, 61502141),国家自然科学基金-深圳联合基金重点项目(U1613217),安徽高校省级自然科学研究重点项目(KJ2017A368)

Facial Expression Recognition Based on Local Texture and Shape Features

Funds: 

The National Natural Science Foundation of China (61672202, 61432004, 61502141), The National Natural Science Foundation of China-Shenzhen Joint Foundation (Key Project) (U1613217), The Key University Science Research Project of Anhui Province (KJ2017A368)

  • 摘要: 针对局部二值模式(LBP)、中心对称局部二值模式(CS-LBP)和梯度方向直方图(HOG)的不足进行改进,该文提出中心对称局部平滑二值模式(CS-LSBP)和绝对梯度方向直方图(HOAG),并提出一种融合局部纹理特征和局部形状特征的人脸表情识别方法。该方法首先采用CS-LSBP算子和HOAG算子分别提取人脸表情图像的局部纹理特征和局部形状特征,然后使用典型线性分析法(CCA)进行特征融合,最后利用支持向量机(SVM)进行表情分类。在JAFFE人脸表情库和Cohn-Kanade(CK)人脸表情库上的实验结果表明,改进的特征提取方法能更加完整、精确地提取图像的细节信息,基于CCA的特征融合方法能充分发挥特征的表征能力,该文所提人脸表情识别方法取得了较好的分类识别效果。
  • 付晓峰, 韦巍. 基于多尺度中心化二值模式的人脸表情识别[J]. 控制理论与应用, 2009, 26(6): 629-633.
    KYPEROUNTAS M, TEFAS A, and PITAS I. Salient feature and reliable classifier selection for facial expression classification[J]. Pattern Recognition, 2010, 43(3): 972-986. doi: 10.1016/j.patcog.2009.07.007.
    FU Xiaofeng and WEI Wei. Facial expression recognition based on multi-scale centralized binary pattern[J]. Control Theory Applications, 2009, 26(6): 629-633.
    UAR A, DEMIR Y, and GZELI C. A new facial expression recognition based on curvelet transform and online sequential extreme learning machine initialized with spherical clustering[J]. Neural Computing and Applications, 2016, 27(1): 131-142. doi: 10.1007/s00521-014-1569-1.
    TAN H C, ZHANG Y J, HAO C, et al. Person-independent expression recognition based on person-similarity weighted expression feature[J]. Journal of Systems Engineering and Electronics, 2010, 21(1): 118-126. doi: 10.3969/j.issn.1004- 4132.2010.01.019.
    ZHANG S, ZHAO X, and LEI B. Facial expression recognition based on local binary patterns and local fisher discriminant analysis[J]. WSEAS Transactions on Signal Processing, 2012, 8(1): 21-31.
    WANG Z, RUAN Q, and AN G. Facial expression recognition using sparse local Fisher discriminant analysis[J]. Neurocomputing, 2016, 174(174): 756-766. doi: 10.1016/ j.neucom.2015.09.083.
    ZHAO X and ZHANG S. Facial expression recognition based on local binary patterns and kernel discriminant isomap[J]. Sensors, 2011, 11(10): 9573-9588. doi: 10.3390/s111009573.
    CHEN J, TAKIGUCHI T, and ARIKI Y. Rotation-reversal invariant HOG cascade for facial expression recognition[J]. Signal Image Video Processing, 2017(1-3): 1-8. doi: 10.1007 /s11760-017-1111-x.
    HEGDE G, SEETHA M, and HEGDE N. Facial expression recognition using entire gabor filter matching score level fusion approach based on subspace methods[J]. Microelectronics Reliability, 2015, 52(3): 497-502. doi: 10.1007/978-3-319-26832-3_6.
    ZHOU H, LAM K M, and HE X. Shape-appearance- correlated active appearance model[J]. Pattern Recognition, 2016, 56(C): 88-99. doi: 10.1016/j.patcog.2016.03.002.
    OJALA T, PIETIKINEN M, and HARWOOD D. A comparative study of texture measures with classification based on featured distributions[J]. Pattern recognition, 1996, 29(1): 51-59. doi: 10.1016/0031-3203(95)00067-4.
    HEIKKIL M, PIETIKINEN M, and SCHMID C. Description of interest regions with local binary patterns[J]. Pattern Recognition, 2009, 42(3): 425-436. doi: 10.1016/ j.patcog.2008.08.014.
    王晓华, 李瑞静, 胡敏, 等. 融合局部特征的面部遮挡表情识别[J]. 中国图象图形学报, 2016, 21(11): 1473-1482. doi: 10.11834/jig.20161107.
    WANG Xiaohua, LI Ruijing, HU Min, et al. Occluded facial expression recognition based on the fusion of local features[J]. Journal of Image and Graphics, 2016, 21(11): 1473-1482. doi: 10.11834/jig.20161107.
    杨利平, 辜小花. 用于人脸识别的相对梯度直方图特征描述[J]. 光学精密工程, 2014, 22(1): 152-159. doi: 10.3788/OPE. 20142201.0152.
    YANG Liping and GU Xiaohua. Relative gradient histogram features for face recognition[J]. Optics and Precision Engineering, 2014, 22(1): 152-159. doi: 10.3788/OPE. 20142201.0152.
    刘帅师, 田彦涛, 万川. 基于Gabor多方向特征融合与分块直方图的人脸表情识别方法[J]. 自动化学报, 2011, 37(12): 1455-1463. doi: 10.3724/SP.J.1004.2011.01455.
    LIU Shuishi, TIAN Yantao, and WAN Chuan. Facial expression recognition method based on gabor multi- orientation features fusion and block histogram[J]. Acta Automatica Sinica, 2011, 37(12): 1455-1463. doi: 10.3724 /SP.J.1004.2011.01455.
    TURAN C and LAM K M. Region-based feature fusion for facial-expression recognition[C]. IEEE International Conference on Image Processing, Paris, 2014: 5966-5970. doi: 10.1109/ICIP.2014.7026204.
    易积政, 毛峡, ISHIZUKA M, 等. 基于特征点矢量与纹理形变能量参数融合的人脸表情识别[J]. 电子与信息学报, 2013, 35(10): 2403-2410. doi: 10.3724/SP.J.1146.2012.01569.
    YI Jizheng, MAO Xia, ISHIZUKA M, et al. Facial expression recognition based on feature point vector and texture deformation energy parameters[J]. Journal of Electronics Information Technology, 2013, 35(10): 2403-2410. doi: 10.3724/SP.J.1146.2012.01569.
    胡敏, 江河, 王晓华, 等. 基于几何和纹理特征的表情层级分类方法[J]. 电子学报, 2017, 45(1): 164-172. doi: 10.3969/ j.issn.0372-2112.2017.01.023.
    HU Min, JIANG He, WANG Xiaohua, et al. A hierarchical classification method of expressions based on geometric and texture features[J]. Acta Electronica Sinica, 2017, 45(1): 164-172. doi: 10.3969/j.issn.0372-2112.2017.01.023.
    孙权森, 曾生根, 王平安, 等. 典型相关分析的理论及其在特征融合中的应用[J]. 计算机学报, 2005, 28(9): 1524-1533. doi: 10.3321/j.issn:0254-4164.2005.09.015.
    SUN Quansen, ZENG Shenggen, WANG Pingan, et al. The theory of canonical correlation analysis and its application to feature fusion[J]. Chinese Journal of Computers, 2005, 28(9): 1524-1533. doi: 10.3321/j.issn:0254-4164.2005.09.015.
  • 加载中
计量
  • 文章访问数:  1597
  • HTML全文浏览量:  220
  • PDF下载量:  313
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-07
  • 修回日期:  2017-12-28
  • 刊出日期:  2018-06-19

目录

    /

    返回文章
    返回