高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

人工噪声辅助的物理层安全信号峰均功率比减低算法

洪涛 张更新

洪涛, 张更新. 人工噪声辅助的物理层安全信号峰均功率比减低算法[J]. 电子与信息学报, 2018, 40(6): 1426-1432. doi: 10.11999/JEIT170739
引用本文: 洪涛, 张更新. 人工噪声辅助的物理层安全信号峰均功率比减低算法[J]. 电子与信息学报, 2018, 40(6): 1426-1432. doi: 10.11999/JEIT170739
HONG Tao, ZHANG Gengxin. Peak-to-average Power Ratio Reduction Algorithm of Artificial-noise-aided Secure Signal[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1426-1432. doi: 10.11999/JEIT170739
Citation: HONG Tao, ZHANG Gengxin. Peak-to-average Power Ratio Reduction Algorithm of Artificial-noise-aided Secure Signal[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1426-1432. doi: 10.11999/JEIT170739

人工噪声辅助的物理层安全信号峰均功率比减低算法

doi: 10.11999/JEIT170739
基金项目: 

国家自然科学基金(91738201, 61302102),江苏省属高校自然科学研究面上项目(13KJB510023)

Peak-to-average Power Ratio Reduction Algorithm of Artificial-noise-aided Secure Signal

Funds: 

The National Natural Science Foundation of China (91738201, 61302102), The Natural Science Foundation of the university of Jiangsu Province (13KJB510023)

  • 摘要: 人工噪声辅助的物理层安全通信系统采用人工噪声破坏窃听信道的方式提升系统安全信道容量是近年来物理层安全通信领域研究的经典系统模型之一。该文针对这一模型中发射信号存在高峰均功率比问题,利用噪声子空间提供的冗余度提出一种基于噪声子空间功率分配的峰均功率比降低算法。该算法通过分式规划、DC规划以及二次非凸等式约束松弛将非凸的峰均功率比优化问题转化为一系列的凸问题迭代求解。仿真结果表明在系统放大器存在一定线性范围的约束下,该文提出的算法能够有效降低人工噪声辅助的物理层安全通信系统发射信号的峰均功率比问题,达到提高系统中合法用户的通信性能的目的。
  • GE Xiaohu, TU Song, MAO Guoqiang, et al. 5G ultra-dense cellular networks[J]. IEEE Wireless Communications, 2016, 23(1): 72-79. doi: 10.1109/MWC.2016.7422408.
    GE Xiaohu, ZI Ran, WANG Haichao, et al. Multi-user massive MIMO communication systems based on irregular antenna arrays[J]. IEEE Transactions on Wireless Communications, 2016, 15(8): 5287-5301. doi: 10.1109/TWC. 2016.2555911.
    GOEL S and NEGI R. Guaranteeing secrecy using artificial noise[J]. IEEE Transactions on Wireless Communications, 2008, 7(6): 2180-2189. doi: 10.1109/TWC.2008.060848.
    ZHOU Xiangyun and MCKAY M R. Secure transmission with artificial noise over fading channels: Achievable rate and optimal power allocation[J]. IEEE Transactions on Vehicular Technology, 2010, 59(8): 3831-3842. doi: 10.1109/TVT.2010. 2059057.
    LIAO Weicheng, CHANG Tsunghui, MA Wingkin, et al. QoS-based transmit beamforming in the presence of eavesdroppers: An optimized artificial-noise-aided approach [J]. IEEE Transactions on Signal Processing, 2011, 59(3): 1202-1216. doi: 10.1109/TSP.2010.2094610.
    LIU Shuiyin, HONG Yi, and VITERBO E. Artificial noise revisited[J]. IEEE Transactions on Information Theory, 2015, 61(7): 3901-3911. doi: 10.1109/TIT.2015.2437882.
    TANG Yanqun, XIONG Jun, MA Dongtang, et al. Robust artificial noise aided transmit design for MISO wiretap channels with channel uncertainty[J]. IEEE Communications Letters, 2013, 17(11): 2096-2099. doi: 10.1109/LCOMM.2013. 100713.131673.
    LI Na, TAO Xiaofeng, and XU Jin. Artificial noise assisted communication in the multiuser downlink: Optimal power allocation[J]. IEEE Communications Letters, 2015, 19(2): 295-298. doi: 10.1109/LCOMM.2014.2385779.
    WANG Huiming, LIU Feng, and YANG Mengchen. Joint cooperative beamforming jamming and power allocation to secure AF relay systems[J]. IEEE Transactions on Vehicular Technology, 2015, 64(10): 4893-4898. doi: 10.1109/TVT.2014. 2370754.
    KAPETANOVIC D, ZHENG G, and RUSEK F. Physical layer security for massive MIMO: An overview on passive eavesdropping and active attacks[J]. IEEE Communications Magazine, 2015, 53(6): 21-27. doi: 10.1109/MCOM.2015. 7120012.
    ZHU Jun, SCHOBER R, and BHARGAVA V K. Secure transmission in multicell massive MIMO systems[J]. IEEE Transactions on Wireless Communications, 2014, 13(9): 4766-4781. doi: 10.1109/TWC.2014.2337308.
    ZHU Jun, SCHOBER R, and BHARGAVA V K. Linear precoding of data and artificial noise in secure massive MIMO systems[J]. IEEE Transactions on Wireless Communications, 2016, 15(3): 2245-2261. doi: 10.1109/TWC. 2015.2500578.
    LIU Xiaoran, MA Dongtang, XIONG Jun, et al. Power allocation for AN-aided beamforming design in MISO wiretap channels with finite-alphabet signaling[C]. 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall), Montral, Canada, 2016: 1-6. doi: 10.1109/VTCFall.2016. 7881170.
    ANOH K, TANRIOVER C, ADEBISI B, et al. A new approach to iterative clipping and filtering PAPR reduction scheme for OFDM systems[J]. IEEE Access, 2017. doi: 10.1109/ACCESS.2017.2751620.
    DINKELBACH W. On nonlinear fractional programming [J]. Management Science, 1967, 13(7): 492-498.
    AN L T H and TAO P D. The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems[J]. Annals of Operations Research, 2005, 133(1/4): 23-46. doi: 10.1007/ s10479-004-5022-1.
    FUCHS B, SKRIVERVIK A, and MOSIG J R. Shape beam synthesis of arrays via sequential convex optimizations[J]. IEEE Antennas and Wireless Propagation Letters, 2013, 12: 1049-1052. doi: 10.1109/LAWP.2013.2280043.
    WANG Jiandong, ZHANG Qinghua, and LJUNG L. Revisiting the two-stage algorithm for hammerstein system identification[C]. Proceedings of the 48h IEEE Conference on Decision and Control Held Jointly with 2009 28th Chinese Control Conference, Shanghai, China, 2009: 3620-3625. doi: 10.1109/CDC.2009.5400243.
    RICHTER S, JONES C N, and MORARI M. Computational complexity certification for real-time MPC with input constraints based on the fast gradient method[J]. IEEE Transactions on Automatic Control, 2012, 57(6): 1391-1403. doi: 10.1109/TAC.2011.2176389.
  • 加载中
计量
  • 文章访问数:  1453
  • HTML全文浏览量:  134
  • PDF下载量:  131
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-20
  • 修回日期:  2018-03-19
  • 刊出日期:  2018-06-19

目录

    /

    返回文章
    返回