高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

集体防御机制下的网络行动同步建模和稳定性

王刚 胡鑫 马润年 刘文斌

王刚, 胡鑫, 马润年, 刘文斌. 集体防御机制下的网络行动同步建模和稳定性[J]. 电子与信息学报, 2018, 40(6): 1515-1519. doi: 10.11999/JEIT170619
引用本文: 王刚, 胡鑫, 马润年, 刘文斌. 集体防御机制下的网络行动同步建模和稳定性[J]. 电子与信息学报, 2018, 40(6): 1515-1519. doi: 10.11999/JEIT170619
WANG Gang, HU Xin, MA Runnian, LIU Wenbin. Synchronization Modeling and Stability of Cyberspace Operation Based on Collective Defensive Mechanism[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1515-1519. doi: 10.11999/JEIT170619
Citation: WANG Gang, HU Xin, MA Runnian, LIU Wenbin. Synchronization Modeling and Stability of Cyberspace Operation Based on Collective Defensive Mechanism[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1515-1519. doi: 10.11999/JEIT170619

集体防御机制下的网络行动同步建模和稳定性

doi: 10.11999/JEIT170619
基金项目: 

国家自然科学基金(61573017, 61572367, 61401499)

Synchronization Modeling and Stability of Cyberspace Operation Based on Collective Defensive Mechanism

Funds: 

The National Natural Science Foundation of China (61573017, 61572367, 61401499)

  • 摘要: 该文从网络安全集体防御机制及其同步分析入手,引入不确定性因子,建立了网络行动同步的改进模型。在此基础上,运用Lyapunov函数分析了网络行动同步的稳定性,提出同步判据,重点分析了系统的边连接概率、网络规模、备用节点数和网络不确定性概率等对同步能力及稳定性的影响,最后给出了仿真验证。理论分析和仿真实验表明,系统的边连接概率、网络规模、备用节点数概率与第2大特征值、最小特征值与第2大特征值之比均呈负相关关系,与网络安全集体防御行动的全局同步稳定和局部同步稳定呈负相关关系。
  • Argonne National Laboratory. Enabling distributed security in cyberspace: Building a healthy and resilient cyber ecosystem with automated collective action[R]. Report of Department of Defense, America, 2011.
    WU Guangyu, SUN Jian, and CHEN Jie. A survery on the security of cyber-physical systems[J]. Control Theory and Technology, 2016, 14(1): 2-10.
    WANG Yinan, LIN Zhiyun, LIANG Xiao, et al. On modeling of electrical cyber-physical systems considering cyber security [J]. Journal of Zhejiang University Science C, 2016, 17(5): 465-478. doi: 10.1631/FITEE.1500446.
    MICHAL C, RAFAL K, MARIA P, et al. Comprehensive approach to increase cyber security and resilience[C]. Proceedings of IEEE the 10th International Conference on Availability, Reliability and Security, Toulouse, 2016: 686-692.
    LIU Lixia, LING Ren, BEI Xiaomeng, et al. Coexistence of synchronization and anti-synchronization of a novel hyperchaotic finance system[C]. Proceedings of IEEE Proceeding of the 34th Chinese Control conference, Hangzhou, 2015: 8585-8589.
    高洋, 李丽香, 彭明海, 等. 多重融合复杂动态网络的自适应同步[J]. 物理学报, 2008, 57(4): 2081-2091.
    GAO Yang, LI Lixiang, PENG Minghai, et al. Adaptive synchronization in untied complex dynamical network with multi-links[J]. Acta Physica Sinica, 2008, 57(4): 2081-2091.
    LUIS M, SARA F, and CLARA G. Complete synchronization and delayed synchronization in couplings[J]. Nonlinear Dynamics, 2015, 79(2): 1615-1624. doi: 10.1007/s11071-014- 1764-8.
    ARIE R, MIRI P, and SHAHAF W. Distributed network synchronization[C]. Proceedings of IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems Tel-Aviv, 2015: 15-19.
    赵明, 周涛, 陈关荣, 等. 复杂网络上动力系统同步的研究进展如何提高网络的同步能力[J]. 物理学进展, 2008, 1(3): 22-34.
    ZHAO Ming, ZHOU Tao, CHEN Guanrong, et al. A review on synchronization of dynamical systems on complex networks: how to enhance the network synchronizability[J]. Progress in Physics, 2008, 1(3): 22-34.
    张檬, 吕翎, 吕娜, 等. 结构与参量不确定的网络与网络之间的混沌同步[J]. 物理学报, 2012, 61(22): 1-5.
    ZHANG Meng, L Ling, L Na, et al. Chaos synchronization between complex networks with uncertain structures and unknown parameters[J]. Acta Physica Sinica, 2012, 61(22): 1-5.
    GUO Peilin and WANG Yuzhen. Matrix expression and vaccination control for epidemic dynamics over dynamic networks[J]. Control Theory and Technology, 2016, 14(1): 1-5.
    孙玺菁, 司守奎. 复杂网络算法与应用[M]. 北京: 国防工业出版社, 2016: 132-187.
    SIVAGANESH G. Master stability function for a class of coupled simple nonlinear electronic circuits[J]. Journal of the Korean Physical Society, 2016, 68(5): 628-632. doi: 10.3938 /jkps.68.628.
    SHU Liang, ZENG Xianlin, and HONG Yiguang. Lyapunov stability and generalized invariance principle for no convex differential inclusions[J]. Control Theory and Technology, 2016, 14(2): 140-150. doi: 10.1007/s11768-016-6037-2.
  • 加载中
计量
  • 文章访问数:  1141
  • HTML全文浏览量:  135
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-28
  • 修回日期:  2018-01-08
  • 刊出日期:  2018-06-19

目录

    /

    返回文章
    返回