高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

融合时空特征的视频序列表情识别

王晓华 夏晨 胡敏 任福继

王晓华, 夏晨, 胡敏, 任福继. 融合时空特征的视频序列表情识别[J]. 电子与信息学报, 2018, 40(3): 626-632. doi: 10.11999/JEIT170592
引用本文: 王晓华, 夏晨, 胡敏, 任福继. 融合时空特征的视频序列表情识别[J]. 电子与信息学报, 2018, 40(3): 626-632. doi: 10.11999/JEIT170592
WANG Xiaohua, XIA Chen, HU Min, REN Fuji. Facial Expression Recognition Based on the Fusion of Spatio-temporal Features in Video Sequences[J]. Journal of Electronics & Information Technology, 2018, 40(3): 626-632. doi: 10.11999/JEIT170592
Citation: WANG Xiaohua, XIA Chen, HU Min, REN Fuji. Facial Expression Recognition Based on the Fusion of Spatio-temporal Features in Video Sequences[J]. Journal of Electronics & Information Technology, 2018, 40(3): 626-632. doi: 10.11999/JEIT170592

融合时空特征的视频序列表情识别

doi: 10.11999/JEIT170592
基金项目: 

国家自然科学基金(61672202, 61432004, 61300119),国家自然科学基金深圳联合基金重点项目(U1613217),江苏省物联网移动互联技术工程实验室开放课题(JSWLW-2017-017)

Facial Expression Recognition Based on the Fusion of Spatio-temporal Features in Video Sequences

Funds: 

The National Natural Science Foundation of China (61672202, 61432004, 61300119), The National Natural Science Foundation of China -Shenzhen Joint Foundation (Key Project) (U1613217), Open foundation of ?The Laboratory for Internet of Things and Mobile Internet Technology of Jiangsu Province (JSWLW-2017-017)

  • 摘要: 针对视频表情识别,静态特征不能有效描述人脸区域沿时间轴动态变化信息的局限,该文提出一种融合动态纹理信息和运动信息的表情识别方法,借鉴LBP-TOP原理,提出具有时空域描述能力的时空韦伯局部描述子(STWLD)来提取动态纹理信息,同时采用分块光流直方图(BHOF)描述运动信息,最后利用SVM对融合后的纹理和运动信息完成表情分类。在CK+和MMI表情数据库上的交叉实验结果表明,相比基于单一特征的识别方法,所提方法取得了更好的效果;与其他相关方法的对比实验也验证了该方法的优越性。
  • CHEON Y and KIM D. Natural facial expression recognition using differential-AAM and manifold learning[J]. Pattern Recognition, 2009, 42(7): 1340-1350. doi: 10.1016/j.patcog. 2008.10.010.
    PAN Z, POLCEANU M, and LISETTI C. On constrained local model feature normalization for facial expression recognition[C]. International Conference on Intelligent Virtual Agents. Los Angeles, CA, USA, 2016: 369-372. doi: 10.1007/978-3-319-47665-0_35.
    ZHU X and RAMANAN D. Face detection, pose estimation, and landmark localization in the wild[C]. 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, 2012: 2879-2886. doi: 10.1109 /CVPR.2012.6248014.
    ZHAO L, WANG Z, and ZHANG G. Facial expression recognition from video sequences based on spatial-temporal motion local binary pattern and Gabor multiorientation fusion histogram[J]. Mathematical Problems in Engineering, 2017, (1): 1-12. doi: 10.1155/2017/7206041.
    ZHOU J, ZHANG S, MEI H, et al. A method of facial expression recognition based on Gabor and NMF[J]. Pattern Recognition and Image Analysis, 2016, 26(1): 119-124. doi: 10.1134/S1054661815040070.
    CHEN J, SHAN S, HE C, et al. WLD: A robust local image descriptor[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1705-1720. doi: 10.1109/ TPAMI.2009.155.
    ZHAO G and PIETIKAINEN M. Dynamic texture recognition using local binary patterns with an application to facial expressions[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(6): 915-928. doi: 10.1109/ TPAMI.2007.111.
    付晓峰, 付晓鹃, 李建军, 等. 视频序列中基于多尺度时空局部方向角模式直方图映射的表情识别[J]. 计算机辅助设计与图形学学报, 2015, 27(6): 1060-1066.
    FU Xiaofeng, FU Xiaojuan, LI Jianjun, et al. Facial expression recognition using multi-scale spatiotemporal local orienta-tional pattern histogram projection in video sequences[J]. Journal of Computer Aided Design Computer Graphics, 2015, 27(6): 1060-1066.
    KAMAROL S K A, JAWARD M H, PARKKINEN J, et al. Spatiotemporal feature extraction for facial expression recognition[J]. IET Image Processing, 2016, 10(7): 534-541. doi: 10.1049/iet-ipr.2015.0519.
    MEINHARDT-Llopis E, P?REZ J S, and KONDERMANN D. Horn-schunck optical flow with a multi-scale strategy[J]. Image Processing on Line, 2013, 20: 151-172. doi: 10.5201/ ipol.2013.20.
    张轩阁, 田彦涛, 颜飞, 等. 基于全局光流特征的微表情识别[J]. 模式识别与人工智能, 2016, 29(8): 760-768. doi: 10.16451 /j.cnki.issn1003-6059.201608011.
    ZHANG Xuange, TIAN Yantao, YAN Fei, et al. Micro- expression recognition based on global optical flow feature[J]. Pattern Recognition and Artificial Intelligence. 2016, 29(8): 760-768. doi: 10.16451/j.cnki.issn1003-6059.201608011.
    YACOOB Y and DAVIS L S. Recognizing human facial expressions from long image sequences using optical flow[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(6): 636-642. doi: 10.1109/34.506414.
    LUCEY P, COHN J F, KANADE T, et al. The extended cohn-kanade dataset (ck+): A complete dataset for action unit and emotion-specified expression[C]. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), California, USA, 2010: 94-101. doi: 10.1.1.182.3759.
    PANTIC M, VALSTAR M, RADEMAKER R, et al. Web-based database for facial expression analysis[C]. IEEE International Conference on Multimedia and Expo, Amsterdam, The Netherlands, 2005: 317-321. doi: 10.1109/ ICME.2005.1521424.
    邱玉, 赵杰煜, 汪燕芳. 结合运动时序性的人脸表情识别方法[J]. 电子学报, 2016, 44(6): 1307-1313. doi: 10.3969/j.issn. 0372-2112.2016.06.007.
    QIU Yu, ZHAO Jieyu, and WANG Yanfang. Facial expression recognition using temporal relations among facial movements[J]. Acta Electronica Sinica, 2016, 44(6): 1307-1313. doi: 10.3969/j.issn.0372-2112.2016.06.007.
    FAN X and TJAHJADI T. A spatial-temporal framework based on histogram of gradients and optical flow for facial expression recognition in video sequences[J]. Pattern Recognition, 2015, 48(11): 3407-3416. doi: 10.1016/j.patcog. 2015.04.025.
    LONG F and BARTLETT M S. Video-based facial expression recognition using learned spatiotemporal pyramid sparse coding features[J]. Neurocomputing, 2016, 173: 2049-2054. doi: 10.1016/j.neucom.2015.09.049
    GUPTA O, RAVIV D, and RASKAR R. Multi-velocity neural networks for facial expression recognition in videos[J]. IEEE Transactions on Affective Computing, 1949, 99: 1.
    FANG H, MAC Parthalin N, AUBREY A J, et al. Facial expression recognition in dynamic sequences: An integrated approach[J]. Pattern Recognition, 2014, 47(3): 1271-1281. doi: 10.1016/j.patcog.2013.09.023.
    WANG Z, WANG S, and Ji Q. Capturing complex spatio- temporal relations among facial muscles for facial expression recognition[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA. 2013: 3422-3429. doi: 10.1109/CVPR.2013.439.
    JUNG H, LEE S, YIM J, et al. Joint fine-tuning in deep neural networks for facial expression recognition[C]. Proceedings of the IEEE International Conference on Computer Vision. Santiago, Chile, 2015: 2983-2991. doi: 10.1109/ICCV.2015.341.
  • 加载中
计量
  • 文章访问数:  987
  • HTML全文浏览量:  171
  • PDF下载量:  301
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-20
  • 修回日期:  2017-11-28
  • 刊出日期:  2018-03-19

目录

    /

    返回文章
    返回