高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于海情和三次样条插值算法的舰船雷达散射截面优化分析方法

颜伟 耿路 周雷 赵阳 王恩荣 朱达

颜伟, 耿路, 周雷, 赵阳, 王恩荣, 朱达. 基于海情和三次样条插值算法的舰船雷达散射截面优化分析方法[J]. 电子与信息学报, 2018, 40(3): 579-586. doi: 10.11999/JEIT170562
引用本文: 颜伟, 耿路, 周雷, 赵阳, 王恩荣, 朱达. 基于海情和三次样条插值算法的舰船雷达散射截面优化分析方法[J]. 电子与信息学报, 2018, 40(3): 579-586. doi: 10.11999/JEIT170562
YAN Wei, GENG Lu, ZHOU Lei, ZHAO Yang, WANG Enrong, ZHU Da. Optimization Analysis Method on Ship RCS Based on Sea Conditions and Cubic Spline Interpolation Algorithm[J]. Journal of Electronics & Information Technology, 2018, 40(3): 579-586. doi: 10.11999/JEIT170562
Citation: YAN Wei, GENG Lu, ZHOU Lei, ZHAO Yang, WANG Enrong, ZHU Da. Optimization Analysis Method on Ship RCS Based on Sea Conditions and Cubic Spline Interpolation Algorithm[J]. Journal of Electronics & Information Technology, 2018, 40(3): 579-586. doi: 10.11999/JEIT170562

基于海情和三次样条插值算法的舰船雷达散射截面优化分析方法

doi: 10.11999/JEIT170562
基金项目: 

国家自然科学基金(51475246),江苏省自然科学基金(BK20161019, BK20131032),江苏省高校自然科学基金(15KJB 470011)

Optimization Analysis Method on Ship RCS Based on Sea Conditions and Cubic Spline Interpolation Algorithm

Funds: 

The National Natural Science Foundation of China (51475246), The Natural Science Foundation of Jiangsu Province (BK20161019, BK20131032), The University Science Research Project of Jiangsu Province (15KJB470011)

  • 摘要: 不同风浪等级下的海面会对船舰目标雷达散射截面(RCS)分析产生强烈影响。该文建立了一种船舰模型,利用物理光学法与矩量法的混合算法(PO-MOM)分析了不同海情下的船舰目标远场单站RCS。之后研究了海情对船舰目标RCS测试结果的影响。最后提出了基于3次样条插值(Cubic Spline Interpolation, CSI)算法的优化补偿方法。结果表明,随着海情等级的增加,舰船RCS降低;利用3次样条插值算法进行补偿,其补偿结果的平均值误差小于0.38 dBsm,最大值误差小于0.05 dBsm,因此能有效地减少海情对船舰RCS测试结果的影响。
  • 朱英富, 张国良. 舰船隐身技术[M]. 哈尔滨: 哈尔滨工程大学, 2003: 10-23.
    ZHU Yingfu and ZHANG Guoliang. Hiding Technology of Vessel[M]. Harbin: Harbin Engineering University, 2003: 10-23.
    许小剑, 李晓飞, 习桂杰, 等. 时变海面雷达目标散射现象学模型[M]. 北京: 国防工业出版社, 2013: 218-224.
    XU Xiaojian, LI Xiaofei, XI Guijie, et al. Radar Phenomenological Models for Ships on Time-evolving Sea Surface[M]. Beijing: National Defense Industry Press, 2013: 218-224.
    崔凯, 许小剑, 毛士艺. 基于高频混合方法的海上目标电磁散射特性分析[J]. 电子与信息学报, 2008, 30(6): 1500-1503. doi: 10.3724/SP.J.1146.2006.01866.
    CUI Kai, XU Xiaojian, and MAO Shiyi. EM backscattering of simplified ship model over sea surface based on a high frequency hybrid method[J]. Journal of Electronics Information Technology, 2008, 30(6): 1500-1503. doi: 10.3724/SP.J.1146.2006.01866.
    GANESH M M, JAGADEESH V K, and ROOPCHAND J. Computation and analysis of RCS for a kinetic energy type anti armour missile at Ka band[J]. International Journal of Applied Electromagnetics and Mechanics, 2015, 47(1): 45-59. doi: 10.3233/JAE-130139.
    LI Yajun, WEI Yinsheng, ZHU Yongpeng, et al. Analysis and simulation for broadening first-order sea clutter spectrum in high frequency hybrid sky-surface wave propagation mode[J]. IET Radar, Sonar Navigation, 2015, 9(6): 609-621. doi: 10.1049/iet-rsn.2014.0008.
    PASQUALE I, RAFFAELLA G, and PHILIP W. A model for the backscattering from a canonical ship in SAR imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(3): 1163-1175. doi: 10.1109/JSTARS.2015.2443557.
    MIANROODI R Y, HEIDAR H, and ARMAKI H M. Expandable shipboard decoy including adequate RCS by using trihedral corner reflectors[J]. IET Science, Measurement Technology, 2016, 10(5): 485-491. doi: 10.1049/iet-smt.2015.0228.
    LI Chao, HE Siyuan, YANG Jiong, et al. Monostatic scattering from two-dimensional two-layer rough surfaces using hybrid 3DMLUV-ACA method[J]. International Journal of Applied Electromagnetics and Mechanics, 2013, 42(1): 1-11. doi: 10.3233/JAE-121640.
    LIU Peng and JIN Yaqiu. The finite-element method with domain decomposition for electromagnetic bistatic scattering from the comprehensive model of a ship on and a target above a large-scale rough sea surface[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(5): 950-956. doi: 10.1109/TGRS.2004.825583.
    关莹, 龚书喜, 张帅, 等. NURBS曲面建模的电大目标的宽带RCS快速计算[J]. 电子与信息学报, 2010, 32(11): 2730-2734. doi: 10.3724/SP.J.1146.2009.01637.
    GUAN Ying, GONG Shuxi, ZHANG Shuai, et al. Fast computation of wideband RCS of electrically large targets modeled with NURBS surfaces[J]. Journal of Electronics Information Technology, 2010, 32(11): 2730-2734. doi: 10.3724/SP.J.1146.2009.01637.
    KIM K, KIM J H, KIM Y H, et al. Numerical investigation on dynamic radar cross section of naval ship considering ocean wave-induced motion[J]. Progress In Electromagnetics Research M, 2012, 27(1): 11-26. doi: 10.2528/PIERM 12101211.
    CERRUTI M, PASTORINO M, RANDAZZO A, et al. A radar cross section and radar performance evaluation tool for the early stage ship design (ESSD) phase[C]. Oceans, Genova, Italy, 2015: 1-5.
    ZHAO Ye, YUAN Xiaofeng, ZHANG Min, et al. Radar scattering from the composite ship-ocean scene: facet-based asymptotical model and specular reflection weighted model[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(9): 4810-4815. doi: 10.1109/TAP.2014.2330869.
    XU Feng and JIN Yaqiu. Bidirectional analytic ray tracing for fast computation of composite scattering from electric-large target over a randomly rough surface[J]. IEEE Transactions on Antennas and Propagation, 2009, 57(7): 1495-1505. doi: 10.1109/TAP.2009.2016691.
    HOSSEIN B and MOJTABA D. RCS of a target above a random rough surface with impedance boundaries using GO and PO methods[C]. Antennas and Propagation Society International Symposium, Chicago, USA, 2012: 1-2.
    ZHANG Lanchao and JIANG Tao. Analysis of radio wave scattering from rough sea surfaces based on high frequency approximation algorithm[C]. Antennas and Propagation, Harbin, China, 2014: 963-966.
    ZHANG Min, ZHAO Ye, LI Jinxing, et al. Reliable approach for composite scattering calculation from ship over a sea surface based on FBAM and GO-PO models[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(2): 775-784. doi: 10.1109/TAP.2016.2633066.
    MEANA J G, MARTINE LORENZO J A, RAPPAPORT C, et al. A PO-MoM comparison for electrically large dielectric geometries[C]. Antennas and Propagation Society International Symposium, Piscataway, USA, 2009: 1-4.
    崔浩, 舒朝君, 王亚. 基于三次样条插值的盐度监测控制装置的温度补偿算法[J]. 仪表技术与传感器, 2016, (6): 88-91. doi: 10.3969/j.issn.1002-1841.2016.06.026.
    CUI Hao, SHU Chaojun, and WANG Ya. Temperature compensation of salinity monitoring and control device based on cubic spline interpolation[J]. Instrument Technique and Sensor, 2016, (6): 88-91. doi: 10.3969/j.issn.1002-1841.2016. 06.026.
  • 加载中
计量
  • 文章访问数:  1277
  • HTML全文浏览量:  157
  • PDF下载量:  228
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-09
  • 修回日期:  2017-11-03
  • 刊出日期:  2018-03-19

目录

    /

    返回文章
    返回