高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无线带内全双工信道的多用户最优分配问题模型

王文鼐 黄亚男 吴炜 王斌

王文鼐, 黄亚男, 吴炜, 王斌. 无线带内全双工信道的多用户最优分配问题模型[J]. 电子与信息学报, 2018, 40(3): 721-727. doi: 10.11999/JEIT170538
引用本文: 王文鼐, 黄亚男, 吴炜, 王斌. 无线带内全双工信道的多用户最优分配问题模型[J]. 电子与信息学报, 2018, 40(3): 721-727. doi: 10.11999/JEIT170538
WANG Wennai, HUANG Yanan, WU Wei, WANG Bin. An Optimal Allocation Model of Wireless In-band Full-duplex Channel for Multiple Access[J]. Journal of Electronics & Information Technology, 2018, 40(3): 721-727. doi: 10.11999/JEIT170538
Citation: WANG Wennai, HUANG Yanan, WU Wei, WANG Bin. An Optimal Allocation Model of Wireless In-band Full-duplex Channel for Multiple Access[J]. Journal of Electronics & Information Technology, 2018, 40(3): 721-727. doi: 10.11999/JEIT170538

无线带内全双工信道的多用户最优分配问题模型

doi: 10.11999/JEIT170538
基金项目: 

国家自然科学基金(61401234)

An Optimal Allocation Model of Wireless In-band Full-duplex Channel for Multiple Access

Funds: 

The National Natural Science Foundation of China (61401234)

  • 摘要: 无线带内全双工(IBFD)具有频谱效率倍增潜力,应用到多用户接入时,共享信道的优化分配将决定系统容量的实际增益。该文分析多用户争用冲突的干扰特性及链路分配的约束条件,以容量最大为优化目标,针对双向全双工(BFD)、全双工中继(FDR)以及两者混合的传输模式,建立信道资源分配的问题模型。通过典型站点分布的最优解计算,分析IBFD系统相对半双工(HD)的容量增益。结果表明,BFD有理想的100%增益,而FDR有较大变化范围(最低增益25%)。此外,计算发现,站点间传输链路呈现1维链型结构的容量增益明显优于2维平面分布的链路结构。
  • 吴皓威, 邹玉涛, 孙晨, 等. 一种应用于WLAN的混合双工MAC协议[J]. 电子与信息学报, 2017, 39(4): 840-846. doi: 10.11999/JEIT160539.
    ZHANG Z, LONG K, VASILAKOS A V, et al. Full-duplex wireless communications: challenges, solutions, and future research directions[J]. Proceedings of the IEEE, 2016, 104(7): 1369-1409. doi: 10.1109/JPROC.2015.2497203.
    WU Haowei, ZOU Yutao, SUN Chen, et al. A hybrid-duplex MAC protocol for WLAN[J]. Journal of Electronics Information Technology, 2017, 39(4): 840-846. doi: 10.11999/ JEIT160539.
    MAHMOOD N H, ANSARI I S, BERARDINELLI G, et al. Analysing self interference cancellation in full duplex radios[C]. Wireless Communications and Networking Conference(WCNC), Doha, 2016: 1-6. doi: 10.1109/WCNC. 2016.7564878.
    MASMOUDI A and LE-NGOC T. Self-interference cancellation limits in full-duplex communication systems[C]. Global Communications Conference (GLOBECOM), Washington, 2016: 1-6. doi: 10.1109/GLOCOM.2016. 7842258.
    CHOI J I, JAIN M, SRINIVASAN K, et al. Achieving single channel, full duplex wireless communication[C]. Proceedings of the Sixteenth Annual International Conference on Mobile Computing and Networking, Chicago, 2010: 1-12. doi: 10.1145/1859995.1859997.
    KIM D, LEE H, and HONG D. A survey of in-band full-duplex transmission: From the perspective of PHY and MAC layers[J]. IEEE Communications Surveys Tutorials, 2015, 17(4): 2017-2046. doi: 10.1109/COMST.2015.2403614.
    THILINA K M, TABASSUM H, HOSSAIN E, et al. Medium access control design for full duplex wireless systems: challenges and approaches[J]. IEEE Communications Magazine, 2015, 53(5): 112-120. doi: 10.1109/MCOM.2015. 7105649.
    SABHARWAL A, SCHNITER P, GUO D, et al. In-band full-duplex wireless: Challenges and opportunities[J]. IEEE Journal on Selected Areas in Communications, 2014, 32(9): 1637-1652. doi: 10.1109/JSAC.2014.2330193.
    QIAO D. Effective capacity of buffer-aided full-duplex relay systems with selection relaying[J]. IEEE Transactions on Communications, 2016, 64(1): 117-129. doi: 10.1109/ TCOMM.2015.2497688.
    WANG Y, XU Y, LI N, et al. Relay selection of full-duplex decode-and-forward relaying over Nakagami-m fading channels[J]. IET Communications, 2016, 10(2): 170-179. doi: 10.1049/iet-com.2015.0524.
    JU H, KIM D, POOR H V, et al. Bi-directional beamforming and its capacity scaling in pairwise two-way communications [J]. IEEE Transactions on Wireless Communications, 2012, 11(1): 346-357. doi: 10.1109/TWC.2011.111611.110970.
    KIM D, PARK S, JU H, et al. Transmission capacity of full- duplex-based two-way ad hoc networks with ARQ protocol[J]. IEEE Transactions on Vehicular Technology, 2014, 63(7): 3167-3183. doi: 10.1109/TVT.2014.2302013.
    JU H, OH E, and HONG D. Catching resource-devouring worms in next generation wireless relay systems: two-way relay and full-duplex relay[J]. IEEE Communications Magazine, 2009, 47(9): 58-65. doi: 10.1109/MCOM.2009. 5277456.
    ALVES H, FRAIDENRAICH G, SOUZA R D, et al. Performance analysis of full duplex and selective and incremental half duplex relaying schemes[C]. 2012 IEEE Wireless Communications and Networking Conference (WCNC), Paris, 2012, 771-775. doi: 10.1109/WCNC.2012. 6214475.
    LIU G, YU F R, JI H, et al. In-band full-duplex relaying: A survey, research issues and challenge[J]. IEEE Communications Surveys Tutorials, 2015, 17(2): 500-524. doi: 10.1109/COMST.2015.2394324.
    BAI J and SABHARWAL A. Distributed full-duplex via wireless side-channels: bounds and protocols[J]. IEEE Transactions on Wireless Communications, 2013, 12(8): 4162-4173. doi: 10.1109/TWC.2013.071913.122015.
    DAS P and SETH D D. Performance analysis of routing protocols for ad-hoc network in a fading environment[C]. IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), Chennai, 2016: 1-5. doi: 10.1109/ICCIC.2016.7919540.
  • 加载中
计量
  • 文章访问数:  1471
  • HTML全文浏览量:  204
  • PDF下载量:  262
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-06
  • 修回日期:  2017-11-13
  • 刊出日期:  2018-03-19

目录

    /

    返回文章
    返回