高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带有上行数据帧聚合的光无线融合接入网络节能机制

吴大鹏 吴光锴 王汝言

吴大鹏, 吴光锴, 王汝言. 带有上行数据帧聚合的光无线融合接入网络节能机制[J]. 电子与信息学报, 2018, 40(3): 690-696. doi: 10.11999/JEIT170508
引用本文: 吴大鹏, 吴光锴, 王汝言. 带有上行数据帧聚合的光无线融合接入网络节能机制[J]. 电子与信息学报, 2018, 40(3): 690-696. doi: 10.11999/JEIT170508
WU Dapeng, WU Guangkai, WANG Ruyan. Energy-saving Mechanism of Integrated Fiber-wireless Access Network with Uplink Data Frame Aggregation[J]. Journal of Electronics & Information Technology, 2018, 40(3): 690-696. doi: 10.11999/JEIT170508
Citation: WU Dapeng, WU Guangkai, WANG Ruyan. Energy-saving Mechanism of Integrated Fiber-wireless Access Network with Uplink Data Frame Aggregation[J]. Journal of Electronics & Information Technology, 2018, 40(3): 690-696. doi: 10.11999/JEIT170508

带有上行数据帧聚合的光无线融合接入网络节能机制

doi: 10.11999/JEIT170508
基金项目: 

国家自然科学基金(61771082),重庆市高校创新团队建设计划资助项目(CXTDX201601020),重庆市教委科学技术研究项目(KJ1401126)

Energy-saving Mechanism of Integrated Fiber-wireless Access Network with Uplink Data Frame Aggregation

Funds: 

The National Natural Science Foundation of China (61771082), The Chongqing Funded Project of Chongqing University Innovation Team Construction (CXTDX201601020), The Science and Technology Research Project of Chongqing Municipal Education Commission (KJ1401126)

  • 摘要: 光无线融合接入网存在光网络单元利用率低,数据传输过程中控制开销较大的问题。该文提出一种带有上行数据帧聚合的节能机制,建立M/G/1模型分析数据帧在无线域节点及光域节点的队列时延,结合不同优先级业务的最大容忍时延,推导各优先级聚合帧在不同网络状态下的最佳长度,进而根据所得到的最佳帧长对光域节点进行休眠调度,在保障业务时延的前提下,尽可能地延长节点休眠时间长度,提高网络能量效率。仿真结果表明,所提方法在有效降低整个网络能耗的同时能够保证业务的时延性能。
  • WU Dapeng, ZHANG Puning, WANG Honggang, et al. Node service ability aware packet forwarding mechanism in intermittently connected wireless networks[J]. IEEE Transactions on Wireless Communications, 2016, 15(12): 8169-8181. doi: 10.1109/TWC.2016.2613077.
    VAN D P, RIMAL B P, ANDREEV S, et al. Machine- to-Machine communications over FiWi enhanced LTE Networks: A power-saving framework and end-to-end performance[J]. Journal of Lightwave Technology, 2016, 34(4): 1062-1071. doi: 10.1109/JLT.2015.2510358.
    BEYRANVAND H, LEVESQUE M, MAIER M, et al. Toward 5G: FiWi enhanced LTE-A HetNets with reliable low-latency fiber backhaul sharing and WiFi offloading[J]. IEEE/ACM Transactions on Networking, 2017, 25(2): 1-18. doi: 10.1109/TNET.2016.2599780.
    Van D P, RIMAL B P, MAIER M, et al. ECO-FiWi: An energy conservation scheme for integrated fiber-wireless access networks[J]. IEEE Transactions on Wireless Communications, 2016, 15(6): 3979-3994. doi: 10.1109/TWC. 2016.2531694.
    FADLULLAH Z M, NISHIYAMA H, KATO N, et al. Smart FiWi networks: Challenges and solutions for QoS and green communications[J]. IEEE Intelligent Systems, 2013, 28(2): 86-91. doi: 10.1109/MIS.2013.46.
    LIU Jiajia, GUO Hongzhi, NISHIYAMA H, et al. New perspectives on future smart FiWi networks: scalability, reliability and energy efficiency[J]. IEEE Communications Surveys Tutorials, 2016, 18(2): 1045-1072. doi: 10.1109/ COMST.2015.2500960.
    LIU Jiaia, GUO Hongzhi, FADLULLAH Z M, et al. Energy consumption minimization for FiWi enhanced LTE-A HetNets with UE connection constraint[J]. IEEE Communications Magazine, 2016, 54(11): 56-62. doi: 10.1109 /MCOM.2016.1600169CM.
    HAN Pengchao, GUO Lei, LIU Yejun, et al. Joint wireless and optical power states scheduling for green multi-radio fiber-wireless access network[J]. Journal of Lightwave Technology, 2016, 34(11): 2610-2623. doi: 10.1109/JLT.2016. 2529644.
    DHAINI A R, HO P H, SHEN Gangxiang, et al. Energy efficiency in TDMA-based next-generation passive optical access networks[J]. IEEE/ACM Transactions on Networking, 2014, 22(3): 850-863. doi: 10.1109/TNET.2013.2259596.
    GE Zhihui, LIANG Anzhong, and LI Taoshen. EEFA: energy efciency frame aggregation scheduling algorithm for IEEE802.11n wireless network[J]. China Communications, 2014, 11(3): 19-26. doi: 10.1109/CC.2014.6825255.
    ALASLANI M, SHOWAIL A, and SHIHADA B. Green frame aggregation scheme for Wi-Fi networks[C]. IEEE International Conference on High Performance Switching and Routing, Budapest, Hungary, 2015: 1-6. doi: 10.1109/HPSR. 2015.7483076.
    JENO S and LEE J. Adaptive frame aggregation scheme for energy efficiency in WLAN[C]. IEEE International Conference on Consumer Electronics, Las Vegas, NV, USA, 2011: 463-464. doi: 10.1109/ICCE.2011.5722685.
    GHAZISAIDI N and MAIER M. Hierarchical frame aggregation techniques for hybrid fiber-wireless access networks[J]. IEEE Communications Magazine, 2011, 49(9): 64-73. doi: 10.1109/MCOM.2011.6011735.
    ZHOU Xiaoli and BOUKERCHE A. AFLAS: An adaptive frame length aggregation scheme in vehicular networks[J]. IEEE Transactions on Vehicular Technology, 2017, 66(1): 855-867. doi: 10.1109/TVT.2016.2533160.
    HABIBI D, AHMAD I, and AHMAD M. Green wireless- optical broadband access network: Energy and quality-of- service considerations[J]. Journal of Optical Communications Networking, 2015, 7(7): 669-680. doi: 10.1364/JOCN.7. 000669.
    LIU Yejun, GUO Lei, ZHANG Lincong, et al. A new integrated energy-saving scheme in green fiber-wireless(FiWi) access network[J]. Science China Information Sciences, 2014, 57(6): 1-15. doi: 10.1007/s11432-013-4958-7.
    GONG Xiaoxue, HOU Weigang, GUO Lei, et al. Dynamic energy-saving algorithm in green hybrid wireless-optical broadband access network[J]. Optik-International Journal for Light and Electron Optics, 2013, 124(14): 1874-1881. doi: 10.1016/j.ijleo.2012.05.030.
    LI Chengjun, GUO Wei, HU Weisheng, et al. Energy-efficient dynamic bandwidth allocation for EPON networks with sleep mode ONUs[J]. Optical Switching Networking, 2015, 15(C): 121-133. doi: 10.1016/j.osn.2014.07.003.
    MANGOLD S, CHOI S, HIERTZ G R, et al. Analysis of IEEE 802.11e for QoS support in wireless LANs[J]. IEEE Wireless Communications, 2003, 10(6): 40-50. doi: 10.1109/ MWC.2003.1265851.
  • 加载中
计量
  • 文章访问数:  1214
  • HTML全文浏览量:  121
  • PDF下载量:  182
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-26
  • 修回日期:  2017-09-30
  • 刊出日期:  2018-03-19

目录

    /

    返回文章
    返回