高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

上行3D-MIMO中利用结构稀疏低秩特性的信道估计算法

刘凯 冯辉 杨涛 胡波

刘凯, 冯辉, 杨涛, 胡波. 上行3D-MIMO中利用结构稀疏低秩特性的信道估计算法[J]. 电子与信息学报, 2018, 40(1): 116-122. doi: 10.11999/JEIT170399
引用本文: 刘凯, 冯辉, 杨涛, 胡波. 上行3D-MIMO中利用结构稀疏低秩特性的信道估计算法[J]. 电子与信息学报, 2018, 40(1): 116-122. doi: 10.11999/JEIT170399
LIU Kai, FENG Hui, YANG Tao, HU Bo. Structured Sparse and Low Rank Channel Estimation in Uplink 3D-MIMO[J]. Journal of Electronics & Information Technology, 2018, 40(1): 116-122. doi: 10.11999/JEIT170399
Citation: LIU Kai, FENG Hui, YANG Tao, HU Bo. Structured Sparse and Low Rank Channel Estimation in Uplink 3D-MIMO[J]. Journal of Electronics & Information Technology, 2018, 40(1): 116-122. doi: 10.11999/JEIT170399

上行3D-MIMO中利用结构稀疏低秩特性的信道估计算法

doi: 10.11999/JEIT170399
基金项目: 

国家自然科学基金(61501124)

Structured Sparse and Low Rank Channel Estimation in Uplink 3D-MIMO

Funds: 

The National Natural Science Foundation of China (61501124)

  • 摘要: 3维多输入多输出(3D-MIMO)系统能有效提升频谱效率,提高系统容量。但用户数和天线数的剧增,无法保证所有用户的导频都正交,给3D-MIMO信道估计带来估计精度下降和复杂度增加等问题。该文分析了上行3D-MIMO系统信道的结构稀疏特性和低秩特性,并基于这些特性提出一种信道估计算法,给出了算法的收敛性和复杂度。仿真结果表明估计算法能准确地恢复3D-MIMO的信道系数,并有较低的复杂度。
  • NAM Y H, NG B L, SAYANA K, et al. Full-Dimension MIMO (FD-MIMO) for next generation cellular technology [J]. IEEE Communications Magazine, 2013, 51(6): 172-179. doi: 10.1109/MCOM.2013.6525612.
    MARZETTA T. Noncooperative cellular wireless with unlimited numbers of base station antennas[J]. IEEE Transactions on Wireless Communications, 2010, 9(11): 3590-3600. doi: 10.1109/TWC.2010.092810.091092.
    BAJWA W U, HAUPT J, SAYEED M S, et al. Compressed channel sensing: A new approach to estimating sparse multipath channels[J]. Proceedings of the IEEE, 2010, 98(6): 1058-1076. doi: 10.1109/ JPROC.2010.2042415.
    TSE D and VISWANATH P. Fundamentals of Wireless Communication[M]. New York: Cambridge University Press, 2005: 290-328.
    POUTANEN J, HANEDA K, SALMI J, et al. Significance of common scatters in multi-link indoor radio wave propagation [C]. Proceedings of the Fourth European Conference on Antennas and Propagation (EuCAP), Barcelona, Spain, 2010: 1-5.
    XIE Hongxiang, GAO Feifei, and JIN Shi. An overview of low-rank channel estimation for massive MIMO systems[J]. IEEE Access, 2016, 4: 7313-7321. doi: 10.1109/ACCESS. 2016.2623772.
    BARBOTIN Y, HORMATI A, RANGAN S, et al. Estimation of sparse MIMO channels with common support [J]. IEEE Transactions on Communications, 2012, 60(12): 3705-3716. doi: 10.1109/TCOMM.2012.091112.110439.
    NAN Yang, ZHANG Li, and SUN Xin. Efficient downlink channel estimation scheme based on block-structured compressive sensing for TDD massive MU-MIMO systems[J]. IEEE Wireless Communications Letters, 2015, 4(4): 345-348. doi: 10.1109/LWC.2015.2414933.
    LIU Kai, FENG Hui, YANG Tao, et al. Structured sparse channel estimation for 3D-MIMO systems[C]. IEEE Vehicular Technology Conference (VTC), Nanjing, China, 2016: 1-6.
    TSAI Chengrung, CHEN Chianghen, LIU Yuhsin, et al. Joint spatially sparse channel estimation for millimeter-wave cellular systems[C]. IEEE Global Conference on Signal and Information Processing (GlobalSIP), Washington D.C., USA, 2016: 605-609.
    NGUYEN S L H and GHRAYEB A. Compressive sensing-based channel estimation for massive multiuser MIMO systems[C]. IEEE Wireless Communications and Networking Conference (WCNC), Shanghai, China, 2013: 2890-2895.
    FANG Jun, LI Xingjian, LI Hongbin, et al. Low-rank covariance-assisted downlink training and channel estimation for FDD massive MIMO systems[J]. IEEE Transactions on Wireless Communications, 2017, 16(3): 1935-1947. doi: 10.1109/TWC.2017.2657513.
    ZHU Yi, LIU Lingjia, and ZHANG Jianzhong. Joint angle and delay estimation for 2D active broadband MIMO-OFDM systems[C]. IEEE Global Communications Conference (GLOBECOM), Atlanta, USA, 2013: 3300-3305.
    RUSEK F, PERSSON D, LAU B K, et al. Scaling up MIMO: Opportunities and challenges with very large arrays[J]. IEEE Signal Processing Magazine, 2013, 30(1): 40-60. doi: 10.1109/ MSP.2011.2178495.
    GAO Zhen, DAI Linglong, DAI Wei, et al. Structured compressive sensing-based spatio-temporal joint channel estimation for FDD massive MIMO[J]. IEEE Transactions on Communications, 2016, 64(2): 607-617. doi: 10.1109/ TCOMM.2015.2508809.
    NEEDELL D and TROPP J A. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples[J]. Communications of the ACM, 2008, 53(12): 93-100.
    GOLUB G H and VAN LOAN C F. Matrix Computations [M]. Baltimore and London: Johns Hopkins University Press, 1996: 470-499.
    WIPF D P and RAO B D. An empirical Bayesian strategy for solving the simultaneous sparse approximation problem[J]. IEEE Transactions on Signal Processing, 2007, 55(7): 3704-3716. doi: 10.1109/TSP.2007. 894265.
    COTTER S F, RAO B D, ENGAN K, et al. Sparse solutions to linear inverse problems with multiple measurement vectors [J]. IEEE Transactions on Signal Processing, 2005, 53(7): 2477-2488. doi: 10.1109/TSP.2005.849172.
    WU Xiaying, GU Lixin, WANG Wenjin, et al. Pilot design and AMP-based channel estimation for massive MIMO- OFDM uplink transmission[C]. IEEE Annual International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), Valencia, Spain, 2016: 1-7.
  • 加载中
计量
  • 文章访问数:  1450
  • HTML全文浏览量:  203
  • PDF下载量:  185
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-02
  • 修回日期:  2017-09-27
  • 刊出日期:  2018-01-19

目录

    /

    返回文章
    返回