高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于内部谐振的弱信号补偿介电目标重构算法

周丽军 欧阳缮 廖桂生 晋良念

周丽军, 欧阳缮, 廖桂生, 晋良念. 基于内部谐振的弱信号补偿介电目标重构算法[J]. 电子与信息学报, 2017, 39(12): 2844-2850. doi: 10.11999/JEIT170287
引用本文: 周丽军, 欧阳缮, 廖桂生, 晋良念. 基于内部谐振的弱信号补偿介电目标重构算法[J]. 电子与信息学报, 2017, 39(12): 2844-2850. doi: 10.11999/JEIT170287
ZHOU Lijun, OUYANG Shan, LIAO Guisheng, JIN Liangnian. Target Reconstruction Method for Weak Signal Compensation Based on Internal Resonances[J]. Journal of Electronics & Information Technology, 2017, 39(12): 2844-2850. doi: 10.11999/JEIT170287
Citation: ZHOU Lijun, OUYANG Shan, LIAO Guisheng, JIN Liangnian. Target Reconstruction Method for Weak Signal Compensation Based on Internal Resonances[J]. Journal of Electronics & Information Technology, 2017, 39(12): 2844-2850. doi: 10.11999/JEIT170287

基于内部谐振的弱信号补偿介电目标重构算法

doi: 10.11999/JEIT170287
基金项目: 

国家自然科学基金(61371186, 61162007),广西自然科学基金(2013GXNSFFA019004)

Target Reconstruction Method for Weak Signal Compensation Based on Internal Resonances

Funds: 

The National Natural Science Foundation of China (61371186, 61162007), The Guangxi Natural Science Foundation (2013GXNSFFA019004)

  • 摘要: 对断裂或下沉路基等电大尺寸异质体目标重构其几何特征(如位置,形状,尺寸等),在环境地质等工程应用及市政基础设施维护中尤为重要。然而由于电磁波在目标体内部的衰减,使得目标下表面反射回波很弱。对此该文提出一种基于内部谐振的弱信号补偿目标重构算法。由于有限目标边界的限制,电磁波在目标体内部沿传播方向产生多次反射,此现象在采样时间记录信号上体现为周期谐振。分析了谐振周期与目标宽度的关系并由此估计目标下表面的位置,结合去除虚像以后的目标前表面位置,重构目标形状。实验结果验证了提出方法的有效性以及对噪声的鲁棒性。
  • WALTON G, LATO M, ANSCHUTZ H, et al. Non-invasive detection of fractures, fracture zones, and rock damage in a hard rock excavation-experience from the Aspo Hard Rock laboratory in Sweden[J]. Engineering Geology, 2015, 196: 210-221. doi: 10.1016/j.enggeo.2015.07.010.
    DANIELS D J. Ground Penetrating Radar[M]. 2nd Ed., London: The Institution of Electrical Engineers, 2004: 4-5.
    SUN M, BASTARD C, PINEL N, et al. Road surface layers geometric parameters estimation by ground penetrating radar using estimation of signal parameters via rotational invariance techniques method[J]. IET Radar, Sonar Navigation, 2016, 10(3): 603-609. doi: 10.1049/iet-rsn.2015. 0374.
    TETIK E and AKDUMAN I. 3D imaging of dielectric objects buried under a rough surface by using CSI[J]. International Journal of Antennas and Propagation, 2015, 2015: 1-8. doi; 10.1155/2015/179304.
    CATAPANO I, CROCCO L, and ISERNIA T. On simple methods for shape reconstruction of unknown scatterers[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(5): 1431-1436. doi: 10.1109/TAP.2007.895563.
    VALERIO G, SOLDOVIERI F, BARONE P M, et al. Shape reconstruction of scatterers by suitable inverse processing of GPR data[C]. The 6th European Conference on Antennas and Propagation, Prague, 2012: 2209-2211. doi: 10.1109/ EuCAP.2012.6206268.
    NOMURA Y, KATO N, NAGANUMA Y, et al. A geometrical analysis of buried flat-plates on ground penetrating radar images[C]. IEEE International Conference on Systems, Man, and Cybernetics, Anchorage, 2011: 3317-3322. doi: 10.1109/ICSMC.2011.6084181.
    SUGAK V and SUGAK A. Phase spectrum of signals in ground-penetrating radar applications[J]. IEEE Transactions on Geoscience Remote Sensing, 2010, 48(4): 1760-1767. doi: 10.1109/TGRS.2009.2036163.
    HUUSKONEN E, MIKHNEV V, and OLKKONEN M. Discrimination of buried objects in impulse GPR using phase retrieval technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(2): 1001-1007. doi: 10.1109/TGRS. 2014.2331427.
    SOLDOVIERI F, BRANCACCIO A, LEONE G, et al. Shape reconstruction of perfectly conducting objects by multiview experimental data[J]. IEEE Transactions on Geoscience Remote Sensing, 2005, 43(1): 65-71. doi: 10.1109/TGRS.2004. 839432.
    MIKHNEV V, OLKKONEN M, and HUUSKONEN E. Identification of buried objects in GPR using phase information extracted from transient response[C]. Proceedings of the 9th European Radar Conference, Amsterdam, 2012: 322-325.
    NI X and HUO X. Statistical interpretation of the importance of phase information in signal and image reconstruction[J]. Statistics Probability Letters, 2007, 77: 447-454. doi: 10.1016/j.spl.2006.08.025.
    PARRELLA G, HAJNSEK I, and PAPATHANASSIOU K P. On the interpretation of polarimetric phase differences in SAR data over land ice[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(2): 192-196. doi: 10.1109/LGRS. 2015.2505172.
    ZHOU Lijun, OUYANG Shan, LIAO Guisheng, et al. A novel reconstruction method based on changes in phase for subsurface large sloped dielectric target using GPR[J]. Journal of Applied Geophysics, 2016, 134: 36-43. doi: 10.1016/j.jappgeo.2016.08.013.
    SKOLNIK M. Radar Handbook[M]. 3rd Ed., New York: Mc Graw Hill, 2008: 3.13-3.15.
    SCHOFIELD J, DANIELS D, and HAMMERTON P. A multiple migration and stacking algorithm designed for land mine detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(11): 6983-6988. doi: 10.1109/ TGRS.2014.2306325.
    WANG Z, ZHANG S, and WYROWSKI F. Modeling laser beam propagation through components with internal multiple reflections[C]. Components and Packaging for Laser Systems, California, 2015: 16-1-16-8. doi: 10.1117/12. 2079562.
    LU Y and DO M N. Multidimensional directional filter banks and surfacelets[J]. IEEE Transactions on Image Processing, 2007, 16(4): 918-931. doi: 10.1109/TIP.2007.891785.
  • 加载中
计量
  • 文章访问数:  875
  • HTML全文浏览量:  81
  • PDF下载量:  217
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-01
  • 修回日期:  2017-09-15
  • 刊出日期:  2017-12-19

目录

    /

    返回文章
    返回