高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于物理模型与边界约束的低照度图像增强算法

陈勇 詹帝 刘焕淋

陈勇, 詹帝, 刘焕淋. 基于物理模型与边界约束的低照度图像增强算法[J]. 电子与信息学报, 2017, 39(12): 2962-2969. doi: 10.11999/JEIT170267
引用本文: 陈勇, 詹帝, 刘焕淋. 基于物理模型与边界约束的低照度图像增强算法[J]. 电子与信息学报, 2017, 39(12): 2962-2969. doi: 10.11999/JEIT170267
CHEN Yong, ZHAN Di, LIU Huanlin. Enhancement Algorithm for Low-lighting Images Based on Physical Model and Boundary Constraint[J]. Journal of Electronics & Information Technology, 2017, 39(12): 2962-2969. doi: 10.11999/JEIT170267
Citation: CHEN Yong, ZHAN Di, LIU Huanlin. Enhancement Algorithm for Low-lighting Images Based on Physical Model and Boundary Constraint[J]. Journal of Electronics & Information Technology, 2017, 39(12): 2962-2969. doi: 10.11999/JEIT170267

基于物理模型与边界约束的低照度图像增强算法

doi: 10.11999/JEIT170267
基金项目: 

国家自然科学基金(60975008),重庆市研究生科研创新项目(CYS17235)

Enhancement Algorithm for Low-lighting Images Based on Physical Model and Boundary Constraint

Funds: 

The National Natural Science Foundation of China (60975008), Chongqing Graduate Student Science Research Innovation Foundation (CYS17235)

  • 摘要: 针对低照度下图像降质严重的问题,该文提出一种基于边界约束与图像亮度的低照度图像增强算法。该算法首先通过改进的边界约束对伪雾图进行透射率估计,并对其进行优化;同时从伪雾图雾的形成原理出发,利用低照度图像的亮度分量进行伪雾图大气光值的估计;最后将增强后的伪雾图反转,即得到增强后的低照度图像。实验结果表明,针对低照度下的图像,该算法可以有效地提升对比度和亮度,过增强现象得到改善;效果优于对比算法,且复杂度低。
  • 田畅, 姜青竹, 吴泽民, 等. 基于区域协方差的视频显著度局部空时优化模型[J]. 电子与信息学报, 2016, 38(7): 1586-1593. doi: 10.11999/JEIT151122.
    TIAN Chang, JIANG Qingzhu, WU Zemin, et al. A local spatiotemporal optimizationframework for video saliency detection using region covariance[J]. Journal of Electronics Information Technology, 2016, 38(7): 1586-1593. doi: 10.11999/JEIT151122.
    王超, 王浩, 王伟, 等. 基于优化 ROI 的医学图像分割与压缩方法研究[J]. 重庆邮电大学学报(自然科学版), 2015, 27(2): 279-284. doi: 10.3979/j.issn.1673-825X.2015.02.025.
    WANG Chao, WANG Hao, WANG Wei, et al. Study of optimized ROI based medical image segmentation and compression method[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2015, 27(2): 279-284. doi: 10.3979/j.issn.1673-825X.2015.02. 025.
    杨爱萍, 张莉云, 曲畅, 等. 基于加权L1正则化的水下图像清晰化算法[J]. 电子与信息学报, 2017, 39(3): 626-633. doi: 10.11999/JEIT160481.
    YANG Aiping, ZHANG Liyun, QU Chang, et al. Underwater images visibility improving algorithm with weighted L1 regularization[J]. Journal of Electronics Information Technology, 2017, 39(3): 626-633. doi: 10.11999/JEIT160481.
    何林远, 毕笃彦, 熊磊, 等. 基于亮度反馈的彩色雾霾图像增强算法[J]. 电子学报, 2015, 43(10): 1978-1983. doi: 10.3969/j. issn.0372-2112.2015.10.015.
    HE Linyuan, BI Duyan, XIONG Lei, et al. Color image haze removal algorithm based on luminance feedback[J]. Acta Electronica Sinica, 2015, 43(10): 1978-1983. doi: 10.3969/ j.issn.0372-2112.2015.10.015.
    戚曹, 朱桂斌, 阳溢, 等. 基于局部自相似性的视频图像超分辨率算法[J]. 重庆邮电大学学报(自然科学版), 2015, 27(5): 692-699. doi: 10.3979/j.issn.1673-825X.2015.05.019.
    QI Cao, ZHU Guibin, YANG Yi, et al. Local self-examples based video images super-resolution algorithm[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2015, 27(5): 692-699. doi: 10.3979/ j.issn.1673-825X.2015.05.019.
    MUKHERJEE J and MITRA S K. Enhancement of color images by scaling the DCT coefficients[J]. IEEE Transactions on Image Processing, 2008, 17(10): 1783-1794. doi: 10.1109/ TIP.2008.2002826.
    ZHOU Z, SANG N, and HU X. Global brightness and local contrast adaptive enhancement for low illumination color image[J]. Optik-International Journal for Light and Electron Optics, 2014, 125(6): 1795-1799. doi: 10.1016/j.ijleo.2013.09. 051.
    SELESNICK I W, BARANIUK R G, and KINGSBURY N G. The dual-tree complex wavelet transform[J]. IEEE Signal Processing Magazine, 2005, 22(6): 123-151. doi: 10.1109/MSP. 2005.1550194.
    李庆忠, 刘清. 基于小波变换的低照度图像自适应增强算法[J]. 中国激光, 2015, 42(2): 272-278. doi: 10.3788/cjl201542. 0209001.
    LI Qingzhong and LIU Qing. Adaptive enhancement algorithm for low illumination images based on wavelet transform[J]. Chinese Journal of Lasers, 2015, 42(2): 272-278. doi: 10.3788/cjl201542.0209001.
    CHANG Y C and CHANG C M. A simple histogram modification scheme for contrast enhancement[J]. IEEE Transactions on Consumer Electronics, 2010, 56(2): 737-742. doi: 10.1109/TCE.2010.5505995.
    JOBSON D J, RAHMAN Z, and WOODELL G A. A multiscale retinex for bridging the gap between color images and the human observation of scenes[J]. IEEE Transactions on Image Processing, 1997, 6(7): 965-976. doi: 10.1109/83. 597272.
    LAND E H. The retinex theory of color vision[J]. Scientific America, 1977, 237(6): 108-128. doi: 10.1038/ scientificamer- ican1277-108.
    XU K and JUNG C. Retinex-based perceptual contrast enhancement in images using luminance adaptation[C]. 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2017: 1363-1367. doi: 10.1109/ ICASSP.2017.7952379.
    DONG X, WANG G, PANG Y, et al. Fast efficient algorithm for enhancement of low lighting video[C]. IEEE International Conference on Multimedia and Expo, Barcelona, 2011: 1-6. doi: 10.1109/ICME.2011.6012107.
    HE K, SUN J, and TANG X. Guided Image Filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6): 1397-1409. doi: 10.1109/TPAMI. 2012.213.
    NARASIMHAN S G and NAYAR S K. Contrast restoration of weather degraded images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(6): 713-724. doi: 10.1109/TPAMI.2003.1201821.
    MENG G, WANG Y, DUAN J, et al. Efficient image dehazing with boundary constraint and contextual regularization[C]. IEEE International Conference on Computer Vision, Sydney, 2013: 617-624. doi: 10.1109/ ICCV.2013.82.
    CHEN Y, XIAO X, LIU H L, et al. Dynamic color image resolution compensation under low light[J]. Optik- International Journal for Light and Electron Optics, 2015, 126(6): 603-608. doi: 10.1016/j.ijleo.2015.01.032.
    GASTAL E S L and OLIVEIRA M M. Domain transform for edge-aware image and video processing[J]. ACM Transactions on Graphics, 2011, 30(4): 1244-1259. doi: 10.1145/1964921. 1964964.
    陈勇, 李愿, 吕霞付, 等. 视觉感知的彩色图像质量积极评价方法[J]. 光学精密工程, 2013, 21(3): 742-750. doi: 10.3788/ OPE.20132103.0742.
    CHEN Yong, LI Yuan, L? Xiafu, et al. Active assessment of color image quality based on visual perception[J]. Optics and Precision Engineering, 2013, 21(3): 742-750. doi: 10.3788/ OPE.20132103.0742.
  • 加载中
计量
  • 文章访问数:  1228
  • HTML全文浏览量:  148
  • PDF下载量:  306
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-29
  • 修回日期:  2017-09-18
  • 刊出日期:  2017-12-19

目录

    /

    返回文章
    返回