高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于行为特征分析的社交网络女巫节点检测机制

吴大鹏 司书山 闫俊杰 王汝言

吴大鹏, 司书山, 闫俊杰, 王汝言. 基于行为特征分析的社交网络女巫节点检测机制[J]. 电子与信息学报, 2017, 39(9): 2089-2096. doi: 10.11999/JEIT170246
引用本文: 吴大鹏, 司书山, 闫俊杰, 王汝言. 基于行为特征分析的社交网络女巫节点检测机制[J]. 电子与信息学报, 2017, 39(9): 2089-2096. doi: 10.11999/JEIT170246
WU Dapeng, SI Shushan, YAN Junjie, WANG Ruyan. Behaviors Analysis Based Sybil Detection in Social Networks[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2089-2096. doi: 10.11999/JEIT170246
Citation: WU Dapeng, SI Shushan, YAN Junjie, WANG Ruyan. Behaviors Analysis Based Sybil Detection in Social Networks[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2089-2096. doi: 10.11999/JEIT170246

基于行为特征分析的社交网络女巫节点检测机制

doi: 10.11999/JEIT170246
基金项目: 

国家自然科学基金(61371097),重庆高校创新团队建设计划(CXTDX201601020)

Behaviors Analysis Based Sybil Detection in Social Networks

Funds: 

The National Natural Science Foundation of China (61371097), The Program for Innovation Team Building at Institutions of Higher Education in Chongqing (CXTDX2016 01020)

  • 摘要: 通过制造大量非法虚假身份,女巫攻击者可以提高自身在社交网络中的影响力,影响网络中社交个体中继选择意愿,窃取社交个体隐私,对其利益造成严重威胁。在对女巫节点行为特征分析的基础上,该文提出一种适用于社交网络的女巫节点检测机制,通过节点间静态相似度和动态相似度评估节点影响力,并筛选可疑节点,进而观察可疑节点的异常行为,利用隐形马尔科夫模型推测女巫节点通过伪装所隐藏的真实身份,更加精确地检测女巫节点。分析结果表明,所提机制能有效提高女巫节点的识别率,降低误检率,更好地保护社交个体的隐私和利益。
  • TONG G, WU W, TANG S, et al. Adaptive influence maximization in dynamic social networks[J]. IEEE Transactions on Networking, 2017, 25(1): 112-125. doi: 10.1109/TNET.2016.2563397.
    CALDELLI R, BECARELLI R, and AMERINI I. Image origin classification based on social network provenance[J]. IEEE Transactions on Information Forensics and Security, 2017, 12(6): 1299-1308. doi: 10.1109/TIFS.2017.2656842.
    KHAN M S, WAHAB A W A, HERAWAN T, et al. Virtual community detection through the association between prime nodes in online social networks and its application to ranking algorithms[J]. IEEE Access, 2016, 4: 9614-9624. doi: 10.1109 /ACCESS.2016.2639563.
    WU D P, ZHANG P N, WANG H G, et al. Node service ability aware, packet forwarding mechanism in intermittently connected wireless networks[J]. IEEE Transactions on Wireless Communications, 2016, 15(12): 8169-8181. doi: 10.1109/TWC.2016.2613077.
    ZHANG K, LIANG X, SHEN X, et al. Exploiting multimedia services in mobile social networks from security and privacy perspectives[J]. IEEE Communications Magazine, 2014, 52(3): 58-65. doi: 10.1109/MCOM.2014.6766086.
    ZHANG J, ZHANG R, SUN J, et al. TrueTop: a sybil- resilient system for user influence measurement on Twitter[J]. IEEE Transactions on Networking, 2016, 24(5): 2834-2846. doi: 10.1109/TNET.2015.2494059.
    VASUDEVAN S K, SIVARAMAN R, and KARTHICK M R. Sybil guard: Defending against sybil attacks via social networks[J]. International Journal of Computer Applications, 2010, 5(3): 27-42. doi: 10.1145/1159913.1159945.
    CHANG W, WU J, TAN C C, et al. Sybil defenses in mobile social networks[C]. IEEE Global Communications Conference, Atlanta, GA, USA, 2013: 641-646. doi: 10.1109/GLOCOM. 2013.6831144.
    KRISHNAMURTHY B, GILL P, and ARLITT M. A few chirps about Twitter[C]. Proceedings of the First Workshop on Online Social Networks, Seattle, USA, 2008: 19-24.
    CHU Z, GIANVECCHIO S, WANG H, et al. Who is tweeting on twitter: Human, bot or cyborg?[C]. Proceedings of 26th Annual Computer Security Applications Conference, Austin, USA, 2010: 21-30.
    TAN L, LIAN Y F, and CHEN K. Malicious users identification in social network based on composite classification model[J]. Computer Applications and Softeware, 2012, 29(12): 1-5.
    ZHANG K, LIANG X, LU R, et al. Exploiting mobile social behaviors for sybil detection[C]. IEEE Conference on Computer Communications, HongKong, China, 2015: 271-279.
    FENG M, MAO S, and JIANG T. Joint duplex mode selection, channel allocation, and power control for full- duplex cognitive femtocell networks[J]. Digital Communications and Networks, 2015, 1(1): 30-44.
    IRFAN R, BICKLER G, KHAN S U, et al. Survey on social networking services[J]. IET Networks, 2013, 2(4): 224-234. doi: 10.1049/iet-net.2013.0009.
    YAO L, MAN Y, HUANG Z, et al. Secure routing based on social similarity in opportunistic networks[J]. IEEE Transactions on Wireless Communications, 2016, 15(1): 594-605. doi: 10.1109/TWC.2015.2476466.
    WU D P, YANG B R, WANG H G, et al. Privacy-preserving multimedia big data aggregation in large-scale wireless sensor networks[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2016, 12(4): 1-19. doi: 10.1145/2978570.
    WANG R Y, YANG H P, WANG H G, et al. Social overlapping community-aware neighbor discovery for D2D communications[J]. IEEE Wireless Communications, 2016, 23(4): 28-34. doi: 10.1109/MWC.2016.7553023.
    QIN L, SUN K Q, and LI S G. Maximum fuzzy entropy image segmentation based on artificial fish school algorithm[C]. International Conference on Intelligent Human-Machine Systems and Cybernetics, Hangzhou, China, 2016: 164-168.
    LIANG X, LI X, ZHANG K, et al. Fully anonymous profile matching in mobile social networks[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(9): 641-655. doi: 10.1109/JSAC.2013.SUP.0513056.
    LUO W, WU Y, YUAN J, et al. The calculation method with Grubbs test for real-time saturation flow tate at signalized intersection[C]. Proceedings of the Second International Conference on Intelligent Transportation, Singapore, 2017: 129-136.
    KITZIG A, NAROSKA E, STOCKMANNS G, et al. A novel approach to creating artificial training and test data for an HMM based posture recognition system[C]. International Workshop on Machine Learning for Signal Processing, Salerno, Italy, 2016: 1-6.
    WANG X F, LIU L, and SU J S. RLM: A general model for trust representation and aggregation[J]. IEEE Transactions on Service Computing, 2012, 5(1): 131-143. doi: 10.1109 /TSC.2010.56.
  • 加载中
计量
  • 文章访问数:  1208
  • HTML全文浏览量:  201
  • PDF下载量:  310
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-29
  • 修回日期:  2017-07-20
  • 刊出日期:  2017-09-19

目录

    /

    返回文章
    返回