TONG G, WU W, TANG S, et al. Adaptive influence maximization in dynamic social networks[J]. IEEE Transactions on Networking, 2017, 25(1): 112-125. doi: 10.1109/TNET.2016.2563397.
|
CALDELLI R, BECARELLI R, and AMERINI I. Image origin classification based on social network provenance[J]. IEEE Transactions on Information Forensics and Security, 2017, 12(6): 1299-1308. doi: 10.1109/TIFS.2017.2656842.
|
KHAN M S, WAHAB A W A, HERAWAN T, et al. Virtual community detection through the association between prime nodes in online social networks and its application to ranking algorithms[J]. IEEE Access, 2016, 4: 9614-9624. doi: 10.1109 /ACCESS.2016.2639563.
|
WU D P, ZHANG P N, WANG H G, et al. Node service ability aware, packet forwarding mechanism in intermittently connected wireless networks[J]. IEEE Transactions on Wireless Communications, 2016, 15(12): 8169-8181. doi: 10.1109/TWC.2016.2613077.
|
ZHANG K, LIANG X, SHEN X, et al. Exploiting multimedia services in mobile social networks from security and privacy perspectives[J]. IEEE Communications Magazine, 2014, 52(3): 58-65. doi: 10.1109/MCOM.2014.6766086.
|
ZHANG J, ZHANG R, SUN J, et al. TrueTop: a sybil- resilient system for user influence measurement on Twitter[J]. IEEE Transactions on Networking, 2016, 24(5): 2834-2846. doi: 10.1109/TNET.2015.2494059.
|
VASUDEVAN S K, SIVARAMAN R, and KARTHICK M R. Sybil guard: Defending against sybil attacks via social networks[J]. International Journal of Computer Applications, 2010, 5(3): 27-42. doi: 10.1145/1159913.1159945.
|
CHANG W, WU J, TAN C C, et al. Sybil defenses in mobile social networks[C]. IEEE Global Communications Conference, Atlanta, GA, USA, 2013: 641-646. doi: 10.1109/GLOCOM. 2013.6831144.
|
KRISHNAMURTHY B, GILL P, and ARLITT M. A few chirps about Twitter[C]. Proceedings of the First Workshop on Online Social Networks, Seattle, USA, 2008: 19-24.
|
CHU Z, GIANVECCHIO S, WANG H, et al. Who is tweeting on twitter: Human, bot or cyborg?[C]. Proceedings of 26th Annual Computer Security Applications Conference, Austin, USA, 2010: 21-30.
|
TAN L, LIAN Y F, and CHEN K. Malicious users identification in social network based on composite classification model[J]. Computer Applications and Softeware, 2012, 29(12): 1-5.
|
ZHANG K, LIANG X, LU R, et al. Exploiting mobile social behaviors for sybil detection[C]. IEEE Conference on Computer Communications, HongKong, China, 2015: 271-279.
|
FENG M, MAO S, and JIANG T. Joint duplex mode selection, channel allocation, and power control for full- duplex cognitive femtocell networks[J]. Digital Communications and Networks, 2015, 1(1): 30-44.
|
IRFAN R, BICKLER G, KHAN S U, et al. Survey on social networking services[J]. IET Networks, 2013, 2(4): 224-234. doi: 10.1049/iet-net.2013.0009.
|
YAO L, MAN Y, HUANG Z, et al. Secure routing based on social similarity in opportunistic networks[J]. IEEE Transactions on Wireless Communications, 2016, 15(1): 594-605. doi: 10.1109/TWC.2015.2476466.
|
WU D P, YANG B R, WANG H G, et al. Privacy-preserving multimedia big data aggregation in large-scale wireless sensor networks[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2016, 12(4): 1-19. doi: 10.1145/2978570.
|
WANG R Y, YANG H P, WANG H G, et al. Social overlapping community-aware neighbor discovery for D2D communications[J]. IEEE Wireless Communications, 2016, 23(4): 28-34. doi: 10.1109/MWC.2016.7553023.
|
QIN L, SUN K Q, and LI S G. Maximum fuzzy entropy image segmentation based on artificial fish school algorithm[C]. International Conference on Intelligent Human-Machine Systems and Cybernetics, Hangzhou, China, 2016: 164-168.
|
LIANG X, LI X, ZHANG K, et al. Fully anonymous profile matching in mobile social networks[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(9): 641-655. doi: 10.1109/JSAC.2013.SUP.0513056.
|
LUO W, WU Y, YUAN J, et al. The calculation method with Grubbs test for real-time saturation flow tate at signalized intersection[C]. Proceedings of the Second International Conference on Intelligent Transportation, Singapore, 2017: 129-136.
|
KITZIG A, NAROSKA E, STOCKMANNS G, et al. A novel approach to creating artificial training and test data for an HMM based posture recognition system[C]. International Workshop on Machine Learning for Signal Processing, Salerno, Italy, 2016: 1-6.
|
WANG X F, LIU L, and SU J S. RLM: A general model for trust representation and aggregation[J]. IEEE Transactions on Service Computing, 2012, 5(1): 131-143. doi: 10.1109 /TSC.2010.56.
|