高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于显著性区域检测和水平集的图像快速分割算法

叶锋 李婉茹 陈家祯 郑子华

叶锋, 李婉茹, 陈家祯, 郑子华. 基于显著性区域检测和水平集的图像快速分割算法[J]. 电子与信息学报, 2017, 39(11): 2661-2668. doi: 10.11999/JEIT170214
引用本文: 叶锋, 李婉茹, 陈家祯, 郑子华. 基于显著性区域检测和水平集的图像快速分割算法[J]. 电子与信息学报, 2017, 39(11): 2661-2668. doi: 10.11999/JEIT170214
YE Feng, LI Wanru, CHEN Jiazhen, ZHENG Zihua. Image Fast Segmentation Algorithm Based on Saliency Region Detection and Level Set[J]. Journal of Electronics & Information Technology, 2017, 39(11): 2661-2668. doi: 10.11999/JEIT170214
Citation: YE Feng, LI Wanru, CHEN Jiazhen, ZHENG Zihua. Image Fast Segmentation Algorithm Based on Saliency Region Detection and Level Set[J]. Journal of Electronics & Information Technology, 2017, 39(11): 2661-2668. doi: 10.11999/JEIT170214

基于显著性区域检测和水平集的图像快速分割算法

doi: 10.11999/JEIT170214
基金项目: 

国家自然科学基金(61671077),福建省自然科学基金(2017J01739),福建省教育厅项目(JA15136),福建师范大学教学改革研究项目(I201602015)

Image Fast Segmentation Algorithm Based on Saliency Region Detection and Level Set

Funds: 

The National Natural Science Foundation of China (61671077), The Natural Science Foundation of Fujian Province (2017J01739), The Scientific Research Fund of Fujian Education Department (JA15136), The Teaching Reform Project of Fujian Normal University (I201602015)

  • 摘要: 为了实现含有复杂背景和弱边界图像的快速准确分割,传统的水平集常采用重新初始化的方法,但是这种方法存在计算量大、分割不准确等问题。因此,结合显著性区域,该文提出一种基于边缘信息与区域局部信息结合的变水平集图像快速分割方法。首先用元胞自动机模型检测出图像的显著性区域,得到图像的初始化边界曲线。然后,采用改进的距离正规化水平集演化(Distance Regularized Level Set Evolution, DRLSE)模型把图像的局部信息结合到变分能量方程中,用改进的能量方程去指导曲线的演化。实验结果表明,与DRLSE模型相比,提出的算法平均消耗的时间只需要前者的2.76%,且具有较高的分割准确性。
  • KASS M, WITKIN A, and TERZOPOULOS D. Snakes Active contour models[C]. IEEE International Conference on Computer Vision, London, UK, 1987: 259-268.
    CHAN T F and VESE L A. Active contours without edges[J]. IEEE Transactions on Image Processing, 2001, 10(2): 266-277. doi: 10.1109/83.902291.
    LI Chunming, XU Chenyang, GUI Changfeng, et al. Distance regularized level set evolution and its application to image segmentation[J]. IEEE Transactions on Image Processing, 2010, 19(12): 3243-3254. doi: 10.1109/TIP.2010.2069690.
    ZHANG Kaihua, SONG Huihui, and ZHANG Lei. Active contours driven by local image fitting energy[J]. Pattern Recognition, 2010, 43(4): 1199-1206. doi: 10.1016/j.patcog. 2009.10.010.
    AGARWAL Pankhuri, KUMAR Sandeep, SINGH Rahul, et al. A combination of bias-field corrected fuzzy C-means and level set approach for brain MRI image segmentation[C]. Soft Computing and Machine Intelligence (ISCMI), Hong Kong, China, 2015: 23-24. doi: 10.1109/ISCMI.2015.16.
    于海平, 何发智, 潘一腾, 等. 一种基于多特征的距离正则化水平集快速分割方法[J]. 电子学报, 2017, 45(3): 534-539. doi: 10.3969/j.issn.372-2112.2017.003.004.
    YU Haiping, HE Fazhi, PAN Yiteng, et al. A fast distance regularized level set method for segmentation based on multi- features[J]. Acta Electronica Sinica, 2017, 45(3): 534-539. doi: 10.3969/j.issn.372-2112.2017.003.004.
    ITTI L, KOCH C, and NIEBUR E. A model of saliency based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254-1259.
    GUO Chenlei, MA Qi, and ZHANG Liming. Spatio-temporal saliency detection using phase spectrum of quaternion fourier transform[C]. IEEE Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, 2008: 1-8. doi: 10.1109/ CVPR.2008.4587715.
    BORJI Ali, CHENG Mingming, JIANG Huaizu, et al. Salient object detection: A benchmark[J]. IEEE Transactions on Image Processing, 2015, 24(12): 5706-5722. doi: 10.1109/TIP. 2015.2487833.
    QUO Jingfan, REN Tongwei, and BEI Jia. Salient object detection for RGB-D image via saliency evolution[C]. IEEE International Conference on Multimedia and Expo, Seattle, WA, USA, 2016: 1-6. doi: 10.1109/ICME.2016.7552907.
    NAQVI S S, BROENE W N, and HOLLITT C. Salient object detection via spectral matting[J]. Pattern Recognition, 2016, 51(C): 209-224. doi: 10.1016/j.patcog.2015.09.026.
    PENG Houwen, LI Bing, LIN GHaibin, et al. Salient object detection via structured matrix decomposition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(4): 818-832. doi: 10.1109/TPAMI.2016.2562626.
    WANG Linzhao, WANG Lijun, LU Huchuan, et al. Saliency detection with recurrent fully convolutional Networks[C]. European Conference on Computer Vision, TIWAKI Corporation, Iwaki, Japan, 2016: 825-841. doi: 10.1007/978- 3-319-46493-0_50.
    KAPOOR A, BISWAS K, and HANMANDLU M. An evolutionary learning based fuzzy theoretic approach for salient object detection[J]. Visual Computer, 2017, 33(5): 665-685. doi: 10.1007/s00371-016-1216-1.
    SUN Jingang, LU Huchuan, and LIU Xiuping. Saliency region detection based on Markov absorption probabilities[J]. IEEE Transactions on Image Processing, 2015, 24(5): 1639-1649. doi: 10.1109/TIP.2015.2403241.
    LEE Gayoung, TAI Yuwing, and KIM Junmo. Deep saliency with encoded low level distance map and high level features [C]. IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Nevada, USA, 2016: 660-668.
    CHOPARD Bastien and DROZ Michel. Book review: Cellular automata modeling of physical systems[J]. Journal of Statistical Physics, 1999, 97(5/6): 1031-1032. doi: 10.1023/A: 1017270215844.
    QIN Yao, LI Huchuan, XU Yiqun, et al. Saliency detection via sellular automata[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 2015: 110-119. doi: 10.1109/CVPR.2015.7298606.
    ACHANTA Radhakrishna, SHAJI Appu, SMITH Smith, et al. SLIC superpixels compared to state-of-the-artsuperpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274-2282. doi: 10.1109/ TPAMI.2012.120.
    郑伟, 张晶, 杨虎. 改进边界指示函数的水平集活动轮廓模型[J]. 激光技术, 2016, 40(1): 126-130. doi: 10.7510/jgjs.issn. 1001-3806.2016.01.028.
    ZHENG Wei, ZHANG Jing, and YANG Hu. The level set active contour model with improved boundary indicator function[J]. Laser Technology, 2016, 40(1): 126-130. doi: 10.7510/jgjs.issn. 1001-3806.2016.01.028.
  • 加载中
计量
  • 文章访问数:  1422
  • HTML全文浏览量:  163
  • PDF下载量:  423
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-17
  • 修回日期:  2017-07-11
  • 刊出日期:  2017-11-19

目录

    /

    返回文章
    返回