高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于最大时域瞬态噪声的去耦电容选择方法

刘洋 白钰杰 罗厚兴 夏建强

刘洋, 白钰杰, 罗厚兴, 夏建强. 基于最大时域瞬态噪声的去耦电容选择方法[J]. 电子与信息学报, 2017, 39(11): 2763-2769. doi: 10.11999/JEIT170210
引用本文: 刘洋, 白钰杰, 罗厚兴, 夏建强. 基于最大时域瞬态噪声的去耦电容选择方法[J]. 电子与信息学报, 2017, 39(11): 2763-2769. doi: 10.11999/JEIT170210
LIU Yang, BAI Yujie, LUO Houxing, XIA Jianqiang. Decoupling Capacitor Selection Method Based on Maximum Time-domain Transient Noise[J]. Journal of Electronics & Information Technology, 2017, 39(11): 2763-2769. doi: 10.11999/JEIT170210
Citation: LIU Yang, BAI Yujie, LUO Houxing, XIA Jianqiang. Decoupling Capacitor Selection Method Based on Maximum Time-domain Transient Noise[J]. Journal of Electronics & Information Technology, 2017, 39(11): 2763-2769. doi: 10.11999/JEIT170210

基于最大时域瞬态噪声的去耦电容选择方法

doi: 10.11999/JEIT170210
基金项目: 

国家自然科学基金项目(61501345),中央高校基本科研业务费(JB150212)

Decoupling Capacitor Selection Method Based on Maximum Time-domain Transient Noise

Funds: 

The National Natural Science Foundation of China (61501345), The Fundamental Research Funds for the Central Universities of China (JB150212)

  • 摘要: 针对传统的基于频域目标阻抗的去耦电容选择方法存在过度设计的问题,该文提出基于最大时域瞬态噪声的去耦电容选择方法。首先,利用板级电流可由一系列三角脉冲近似合成这一性质,推导出了去耦电容瞬态电压噪声达到局部最大值的时刻及时域瞬态阻抗应该满足的条件,并通过分析VRM支路最大瞬态电压噪声确定了去耦电容的去耦时间范围;其次,通过研究去耦电容时域瞬态阻抗曲线的性质和特点,制定了去耦电容的选择标准。最后,提出基于最大时域瞬态噪声的去耦设计方案。通过对4个具有典型激励输入的实例进行去耦设计,结果表明,在输入激励条件相同且满足电压噪声要求的前提下,与传统频域目标阻抗法获得的去耦方案相比,该文提出的算法所需电容数量至少能减少24.59%以上。
  • YAO Shengpeng, LI Chunlai, TENG Yun, et al. Research on reactive power and voltage optimization control method based on active distribution network[C]. 2016 International Conference on Smart City and Systems Engineering (ICSCSE), Hunan, 2016: 435-438. doi: 10.1109/ICSCSE.2016. 0121.
    YANG Hong, LI Gengfeng, ZENG Fangdi, et al. Researches on the optimization model and strategies against low voltage in power distribution network[C]. 2016 IEEE PES Asia- Pacific Power and Energy Engineering Conference (APPEEC), Xi,an, 2016: 435-438. doi: 10.1109/APPEEC. 2016.7779902.
    BOUAKRA A and FOUAD S H. Voltage regulation of power distribution networks interconnected with a decentralized photovoltaic power producer[C]. 2016 3rd International Conference on Renewable Energies for Developing Countries (REDEC), Berlin, 2016: 1-6. doi: 10.1109/ICSCSE.2016. 0121.
    CHOI J Y and SWAMINATHAN M. Decoupling capacitor placement in power delivery networks using MFEM[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2011, 1(10): 1651-1661. doi: 0.1109/TCPMT. 2011.2165954.
    GUANG Chen. Challenges and solutions for core power distribution network designs[J]. IEEE Electromagnetic Compatibility Magazine, 2016, 5(4): 104-111. doi: 10.1109/ MEMC.2016.7866247.
    KIM Y W, KIM K Y, CHOI J Y, et al. Power distribution network design and optimization based on frequency dependent target impedance[C]. 2015 IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS), Seoul, 2015: 39-92. doi: 10.1109/EDAPS.2015.7383675.
    YOON J and KIM J. A slope and amplitude controllable triangular-current generator for the injection of a broad-band PDN noise[J]. IEEE Electromagnetic Compatibility Magazine, 2016, 5(4): 112-116. doi: 0.1109/TCPMT.2011.2165954.
    KIM J, WU S P, WANG H F, et al. Improved target impedance and IC transient current measurement for power distribution network design[C]. 2010 IEEE International Symposium on Electromagnetic Compatibility (EMC), Fort Lauderdale, 2010: 445-450. doi: 10.1109/ISEMC.2010. 5711316.
    LIU Yang, YUAN Yuzhang, CHEN Kongqian, et al. Decoupling capacitors selection algorithm based on maximum anti-resonance points and quality factor of capacitor[J]. Electronics Letters, 2015, 51(1): 90-92. doi: 10.1049/el.2014.2236.
    LI Xingming and HU Shanqing. Power distribution network design from charge delivery perspective[J]. Electromagnetic Compatibility Magazine, 2014, 3(4): 55-58. doi: 10.1109/ MEMC.2014.7023199.
    SMITH L D and LEE J. Power distribution system for JEDEC DDR2 memory DIMM[C]. Electrical Performance of Electronic Packages (EPEP), Princeton N.J, 2003: 121-124. doi: 10.1109/EPEP.2003.1250013.
    ARCHAMBEAULT B and CONNOR S. The effect of decoupling capacitor distance on printed circuit boards using both frequency and time domain analysis[C]. IEEE International Symposium on Electromagnetic Compatibility, Chicago, 2005: 650-654. doi: 10.1109/ISEMC.2005.1513594.
    DREWNIAK J L. Comparing time-domain and frequency domain techniques for investigation on charge delivery and power-bus noise for high-speed printed circuit boards[OL]. http: //design.iconnect007.com/index.php/article/19600/ comparing-time-domain-and-frequency-domain-techniques
    for-investigation-on-charge-delivery-and-power-bus-noise-for-high-speed-printed-circuit-boards/19603/?skin=design, 2016.
    ZHANG Mushui, LI Yushan, LI Liping, et al. An efficient power-delivery method for the design of the power distribution networks for high-speed digital systems[J]. IEEE Transactions on Microwave Theory and Techniques, 2009, 57(3): 693-707. doi: 10.1109/TMTT.2009.2013308.
    ZHANG Mushui, TAN Hongzhou, and MAO Junfa. New power distribution network design method for digital systems using time-domain transient impedance[J]. IEEE Transactions on Components Packaging and Manufacturing Technology, 2013, 3(3): 1399-1408. doi: 10.1109/TCPMT. 2013.2261932.
    JIN Hanbiao, LI Erping, ALBERT E, et al. Time domain PDN noise modeling for high performance system[C]. 2016 IEEE 25th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS), San Diego, 2016: 61-64. doi: 10.1109/EPEPS.2016.7835418.
  • 加载中
计量
  • 文章访问数:  1382
  • HTML全文浏览量:  124
  • PDF下载量:  161
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-07
  • 修回日期:  2017-07-10
  • 刊出日期:  2017-11-19

目录

    /

    返回文章
    返回