高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于显著度融合的自适应分块行人再识别

陈鸿昶 陈雷 李邵梅 朱俊光

陈鸿昶, 陈雷, 李邵梅, 朱俊光. 基于显著度融合的自适应分块行人再识别[J]. 电子与信息学报, 2017, 39(11): 2652-2660. doi: 10.11999/JEIT170162
引用本文: 陈鸿昶, 陈雷, 李邵梅, 朱俊光. 基于显著度融合的自适应分块行人再识别[J]. 电子与信息学报, 2017, 39(11): 2652-2660. doi: 10.11999/JEIT170162
CHEN Hongchang, CHEN Lei, LI Shaomei, ZHU Junguang. Person Re-identification of Adaptive Blocks Based on Saliency Fusion[J]. Journal of Electronics & Information Technology, 2017, 39(11): 2652-2660. doi: 10.11999/JEIT170162
Citation: CHEN Hongchang, CHEN Lei, LI Shaomei, ZHU Junguang. Person Re-identification of Adaptive Blocks Based on Saliency Fusion[J]. Journal of Electronics & Information Technology, 2017, 39(11): 2652-2660. doi: 10.11999/JEIT170162

基于显著度融合的自适应分块行人再识别

doi: 10.11999/JEIT170162
基金项目: 

国家自然科学基金(61379151, 61521003),河南省杰出青年基金(144100510001)

Person Re-identification of Adaptive Blocks Based on Saliency Fusion

Funds: 

The National Natural Science Foundation of China (61379151, 61521003), Outstanding Youth Foundation of Henan Province (144100510001)

  • 摘要: 针对基于分块匹配的行人再识别中对分块的规则和大小缺乏指导,以及不同分块间的区分度差异问题,该文提出基于显著度融合的自适应分块行人再识别方法。首先,利用启发式思想确定初始聚类中心,并根据图像内容自动确定分块的大小和数目。然后,利用归一化部分曲线下面积计算各块的图像间显著度,利用结构化支持向量机学习各块的图像内显著度,并融合两类显著度得到各块的权重作为匹配得分融合的依据。实验证明,在常用的行人再识别数据集上,该方法能取得较好的识别结果。
  • ZHENG W S, GONG S, and XIANG T. Reidentification by relative distance comparison[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2013, 35(3): 653-668. doi: 10.1109/TPAMI.2012.138.
    ZHANG L, KALASHNIKOV D V, MEHROTRA S, et al. Context-based person identification framework for smart video surveillance[J]. Machine Vision Applications, 2014, 25(7): 1711-1725. doi: 10.1007/s00138-013-0535-8.
    HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2015, 37(9): 1904-1916. doi: 10.1109/TPAMI.2015.2389824.
    齐美彬, 檀胜顺, 王运侠, 等. 基于多特征子空间与核学习的行人再识别[J]. 自动化学报, 2016, 33(2): 299-308. doi: 10.16383/j.aas.2016.c150344.
    QI Meibin, TAN Shengshun, WANG Yunxia, et al. Multi- feature subspace and kernel learning for pedestrian re- identification[J]. Automation Journal, 2016, 33(2): 299-308. doi: 10.16383/j.aas.2016.c150344.
    曾明勇, 吴泽民, 田畅, 等. 基于外观统计特征融合的人体目标再识别[J]. 电子与信息学报, 2014, 36(8): 1844-1851. doi: 10.3724/SP.J.1146.2013.01389.
    ZENG Mingyong, WU Zemin, TIAN Chang, et al. Fusing appearance statistical features for person re-identification[J]. Journal of Electronics Information Technology, 2014, 36(8): 1844-1851. doi: 10.3724/SP.J.1146.2013.01389.
    FARENZENA M, BAZZANI L, PERINA A, et al. Person re-identification by symmetry-driven accumulation of local features[C]. IEEE Computer Vision and Pattern Recognition, San Francisco, California, USA, 2010: 2360-2367. doi: 10. 1109/CVPR.2010.5539926.
    ZHAO R, OUYANG W, and WANG X. Unsupervised salience learning for person re-identification[C]. IEEE Computer Vision and Pattern Recognition, Columbus, Ohio, USA, 2013: 3586-3593. doi: 10.1109/CVPR.2013.460.
    ZHAO R, OUYANG W and WANG X. Learning mid-level filters for person re-identification[C]. IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 2014: 144-151. doi: 10.1109/ CVPR.2014.26.
    ZHANG L, LI K, ZHANG Y, et al. Adaptive image segmentation based on color clustering for person re-identification[J]. Soft Computing, 2016, 36(2): 1-11. doi: 10.1007/s00500-016-2150-x.
    ENDRES I and HOIEM D. Category-independent object proposals with diverse ranking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(2): 222-234. doi: 10.1109/ TPAMI.2013.122.
    ALEXE B, DESELAERS T, and FERRARI V. What is an object?[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, California, USA, 2010: 73-80. doi: 10.1109/CVPR. 2010.5540226.
    JIANG F, JIA L, SHENG X, et al. Manifold regularization in structured output space for semi-supervised structured output prediction[J]. Neural Computing Applications, 2016, 27(8): 2605-2614. doi: 10.1007/s00521-015-2029-2.
    JOACHIMS T, FINLEY T, and YU C N J. Cutting-plane training of structural SVMs[J]. Machine Learning, 2009, 77(1): 27-59. doi: 10.1007/s10994-009-5108-8.
    LI Wei and WANG Xiaogang. Locally aligned feature transforms across views[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Ohio, USA, 2013: 3594-3601. doi: 10.1109/CVPR. 2013.461.
    SCHWARTZ W R and DAVIS L S. Learning discriminative appearance-based models using partial least squares[C]. Proceedings of the XXII Brazilian Symposium on Computer Graphics and Image Processing, Rio De Janeiro, Brazil, 2009: 322-329. doi: 10.1109/SIBGRAPI.2009.42.
    DING S, LIN L, WANG G, et al. Deep feature learning with relative distance comparison for person re-identification[J]. Pattern Recognition, 2015, 48(10): 2993-3003. doi: 10.1016/j. patcog.2015.04.005.
    陈莹, 霍中花. 多方向显著性权值学习的行人再识别[J]. 中国图象图形学报, 2015, 20(12): 1674-1683. doi: 10.11834/ jig.20151212.
    CHEN Ying and HUO Zhonghua. Person re-identification based on multi-directional saliency metric learning[J]. Journal of Image and Graphics, 2015, 20(12): 1674-1683. doi: 10.11834/jig.20151212.
    MARTIN Hirzer, PETER M Roth, MARTIN Kostinger, et al. Relaxed pairwise learned metric for person re-identification [C]. Proceedings of the IEEE European Conference on Computer Vision, Firenze, Italy, 2012: 780-793. doi: 10.1007/ 978-3-642-33783-3_56.
    DONG Yi, ZHEN Lei, LIAO Shengcai, et al. Deep metric learning for person re-identification[C]. Proceedings of International Conference on Pattern Recognition, Sweden, 2014: 34-39. doi: 10.1109/ICPR.2014.16.
  • 加载中
计量
  • 文章访问数:  1361
  • HTML全文浏览量:  138
  • PDF下载量:  318
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-24
  • 修回日期:  2017-04-27
  • 刊出日期:  2017-11-19

目录

    /

    返回文章
    返回