高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于可重构频率选择表面的天线RCS减缩研究

王夫蔚 任宇辉 高宝建

王夫蔚, 任宇辉, 高宝建. 基于可重构频率选择表面的天线RCS减缩研究[J]. 电子与信息学报, 2017, 39(12): 2983-2989. doi: 10.11999/JEIT170136
引用本文: 王夫蔚, 任宇辉, 高宝建. 基于可重构频率选择表面的天线RCS减缩研究[J]. 电子与信息学报, 2017, 39(12): 2983-2989. doi: 10.11999/JEIT170136
WANG Fuwei, REN Yuhui, GAO Baojian. Research on Antenna Radar Cross Section Reduction Based on Reconfigurable Frequency Selective Surface[J]. Journal of Electronics & Information Technology, 2017, 39(12): 2983-2989. doi: 10.11999/JEIT170136
Citation: WANG Fuwei, REN Yuhui, GAO Baojian. Research on Antenna Radar Cross Section Reduction Based on Reconfigurable Frequency Selective Surface[J]. Journal of Electronics & Information Technology, 2017, 39(12): 2983-2989. doi: 10.11999/JEIT170136

基于可重构频率选择表面的天线RCS减缩研究

doi: 10.11999/JEIT170136
基金项目: 

国家自然科学基金(61501372)

Research on Antenna Radar Cross Section Reduction Based on Reconfigurable Frequency Selective Surface

Funds: 

The National Natural Science Foundation of China (61501372)

  • 摘要: 针对天线雷达截面减缩问题,该文提出一种基于二极管控制的可重构频率选择表面结构,并将其用于天线的雷达截面减缩技术。论文将可重构技术应用于频率选择表面设计,使得频率选择表面可以在带通型以及带阻型之间进行相互切换。为了在保证天线辐射特性的前提下降低天线的雷达截面,该文考虑将可重构频率选择表面作为天线反射板用以置换一般的金属反射板。通过二极管导通/截断使得可重构频率选择表面反射板处于不同状态,以实现天线在不同工作状态下的RCS减缩控制及切换。仿真及实测结果表明,使用可重构频率选择表面反射板,天线雷达截面的最大减缩量可达20 dB以上,减缩角域可达-60+60,同时天线的辐射特性几乎未发生变化。该方法可在保证天线辐射特性的基础上极大程度降低天线的雷达截面,并能做到天线雷达截面减缩频段的可重构。
  • 周禹龙, 曹祥玉, 高军, 等. 双频频率选择表面及其在微带天线宽带RCS 减缩中的应用[J]. 电子与信息学报, 2017, 39(6): 1446-1451. doi: 10.11999/JEIT160854.
    ZHOU Y L, CAO X Y, GAO J, et al. Dualband frequncey selective surface and its application to wideband RCS reduction of the microstrip antenna[J]. Journal of Electronics Information Technology, 2017, 39(6): 1446-1451. doi: 10.11999/JEIT160854.
    张晨, 曹祥玉, 高军, 等. 低RCS宽带磁电偶极子贴片天线设计[J]. 电子与信息学报, 2016, 38(4): 1012-1016. doi: 10.11999 /JEIT150897.
    ZHANG C, CAO X Y, GAO J, et al. Low radar cross section and broadband magneto-electric dipole patch antenna[J]. Journal of Electronics Information Technology, 2016, 38(4): 1012-1016. doi: 10.11999/JEIT150897.
    PAN W B, HUANG C, CHEN P, et al. A Low-RCS and high-gain partially reflecting surface antenna[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(2): 945-949. doi: 10.1109/TAP.2013.2291008.
    JIANG W, LIU Y, GONG S X, et al. Application of bionics in antenna radar cross section reduction[J]. IEEE Antenna and Wireless Propagation Letters, 2009, 8: 1275-1278. doi: 10.1109/LAWP.2009.2037168.
    WANG F W, JIANG W, HONG T, et al. RCS reduction of wideband antenna with a novel wideband radar absorbing materials[J]. IET Microwaves, Antennas Propagation, 2014, 8(7): 491-497. doi: 10.1049/iet-map.2013.0356.
    OUEDRAOGO R O, ROTHWELL E J, and GREETIS B J. A reconfigurable microstrip leaky- wave antenna with a broadly steerable beam[J]. IEEE Transactions on Antennas and Propagation, 2011, 59(8): 3080-3083. doi: 10.1109/TAP. 2011.2158970.
    WANG B Z, XIAO S Q, and WANG J. Reconfigurable patch antenna design for wideband wireless communication systems [J]. IET Microwaves, Antennas and Propagation, 2007, 1(6): 414-419. doi: 10.1049/iet-map:20050349.
    PIAZZA D, MOOKIAH P, DAMIOO M, et al. Experimental analysis of pattern and polarization reconfigurable circular patch antennas for MIMO systems[J]. IEEE Transactions on Vehicular Technology, 2010, 59(5): 2352-2362. doi: 10.1109/ TVT.2010.2043275.
    CAI Y X and DU Z W. A novel pattern reconfigurable antenna array for diversity systems[J]. IEEE Antennas and Wireless Propagation Letters, 2009, 8: 1227-1230. doi: 10.1109/LAWP.2009.2035720.
    LAI M I, WU T Y, HSIEH J C, et al. Design of reconfigurable antennas based on an L-shaped slot and PIN diodes for compact wireless devices[J]. IET Microwaves, Antennas and Propagation, 2009, 3(1): 47-54. doi: 10.1049/iet-map: 20080049.
    CHANG W J, LI M, LI G P, et al. Reconfigurable scan-beam single-arm spiral antenna integrated with RF-MEMS switches[J]. IEEE Transactions on Antennas and Propagation, 2006, 54(2): 455-463. doi: 10.1109/TAP.2005.863407.
    官正涛, 何海丹, 何庆强. 一种基于可重构机理的微带天线RCS缩减技术[J]. 成都大学学报, 2014, 33(4): 362-364.
    GUAN Z T, HE H D, and HE Q Q. Reconfigurable microstrip antenna RCS reduction technique[J]. Journal of Chengdu University, 2014, 33(4): 362-364.
    HUANG C, PAN W B, MA X L, et al. Low-loss circularly polarized transmitarray for beam steering application[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(10): 4471-4476. doi: 10.1109/TAP.2016.2586580.
    王夫蔚, 龚书喜, 张鹏飞, 等. 结构型吸波材料在阵列天线RCS减缩中的应用[J]. 西安电子科技大学学报, 2012, 39(5): 116-120. doi: 10.3969/j.issn.1001-2400.2012.05.016.
    WANG F W, ZHANG P F, GONG S X, et al. Radar absorbing material applied to the RCS reduction of array antennas[J]. Journal of Xidian University, 2012, 39(5): 116-120. doi: 10.3969/j.issn.1001-2400.2012.05.016.
    LI Y Q, ZHANG H, FU Y Q, et al. RCS reduction of ridged waveguide slot antenna array using EBG radar absorbing material[J]. IEEE Antennas and Wireless Propagation Letters, 2008, 7: 473-476. doi: 10.1109/LAWP.2008.2001548.
    WANG F W, GUO L X, and GONG S X. Left-handed material superstrate applied to the RCS reduction of microstrip antenna[J]. Journal of Electromagnetic Waves and Applications, 2016, 30(11): 1428-1439. doi: 10.1080/09205071. 2016.1202784.
    YAN S and VANDENBOSOH G A E. Radiation pattern- reconfigurable wearable antenna based on metamaterial structure[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 1715-1718. doi: 10.1109/LAWP.2016. 2528299.
    SIM C Y D, LIAO Y J, and LIN H L. Polarization reconfigurable eccentric annular ring slot antenna design[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(9): 4152-4155. doi: 10.1109/TAP.2015.2443173.
    YANG W H, CHE W Q, JIN H Y, et al. A polarization- reconfigurable dipole antenna using polarization rotation AMC structure[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(12): 5305-5315. doi: 10.1109/TAP.2015. 2490250.
    MIAS C. Varactor-tunable drequency selective surface with resistive lumped element biasing grids[J]. IEEE Microwave and Wireless Components Letters, 2005, 5(9): 570-572. doi: 10.1109/LMWC.2005.855372.
    MUNK B A. Frequency Selective Surfaces: Theory and Design[M]. New York, Wiley, 2000, Section II.
    WANG W T, GONG, S X, WANG X, et al. RCS reduction of array antenna by using bandstop FSS reflector[J]. Journal of Electromagnetic Waves and Applications, 2009, 23(11): 1505-1514. doi: 10.1163/156939309789476473.
    HOSSEINI A, CAPOLINO F, and FLAVIIS F D. Gain enhancement of a v-band antenna using a fabry-prot cavity with a self-sustained all-metal cap with FSS[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(3): 909-921. doi: 10.1109/TAP.2014.2386358.
  • 加载中
计量
  • 文章访问数:  1055
  • HTML全文浏览量:  172
  • PDF下载量:  205
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-21
  • 修回日期:  2017-09-05
  • 刊出日期:  2017-12-19

目录

    /

    返回文章
    返回