高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于可穿戴设备的日常压力状态评估研究

赵湛 韩璐 方震 陈贤祥 杜利东 刘正奎

赵湛, 韩璐, 方震, 陈贤祥, 杜利东, 刘正奎. 基于可穿戴设备的日常压力状态评估研究[J]. 电子与信息学报, 2017, 39(11): 2669-2676. doi: 10.11999/JEIT170120
引用本文: 赵湛, 韩璐, 方震, 陈贤祥, 杜利东, 刘正奎. 基于可穿戴设备的日常压力状态评估研究[J]. 电子与信息学报, 2017, 39(11): 2669-2676. doi: 10.11999/JEIT170120
ZHAO Zhan, HAN Lu, FANG Zhen, CHEN Xianxiang, DU Lidong, LIU Zhengkui. Research on Daily Stress Detection Based on Wearable Device[J]. Journal of Electronics & Information Technology, 2017, 39(11): 2669-2676. doi: 10.11999/JEIT170120
Citation: ZHAO Zhan, HAN Lu, FANG Zhen, CHEN Xianxiang, DU Lidong, LIU Zhengkui. Research on Daily Stress Detection Based on Wearable Device[J]. Journal of Electronics & Information Technology, 2017, 39(11): 2669-2676. doi: 10.11999/JEIT170120

基于可穿戴设备的日常压力状态评估研究

doi: 10.11999/JEIT170120
基金项目: 

国家自然科学基金(61302033),北京市自然科学基金(Z160003),国家重点研发计划(2016YFC1304302)

Research on Daily Stress Detection Based on Wearable Device

Funds: 

The National Natural Science Foundation of China (61302033), The Key Project of Beijing Municipal Natural Science Foundation (Z160003), The National Key Research and Development Project (2016YFC1304302, 2016YFC0206502, 2016YFC1303900)

  • 摘要: 现代生活普遍压力较大,容易引起消极痛苦的应激,导致不良情绪甚至滋生各类慢性病。心理专家需要了解个体的压力状态,从而开展对应性心理疏导和治疗。传统心理学自评法存在一定的主观性;基于生理多导仪的压力状态评估法,受设备体积所限无法用于日常压力状态评估。针对上述问题,该文采用可穿戴式传感设备实时采集个体生理信号,利用心理和生理的伴生关系,对个体的心理压力进行长期实时评估。同时通过蒙特利尔影像应激实验(MIST)诱发出被试平静、轻微及高度压力3种压力状态,此实验范式同时包含认知负荷精神压力因素与社会评价心理压力因素,与日常真实生活更为接近。该文共采集39名健康被试的实验数据,通过对数据的特征值提取等预处理,结合随机森林算法对最优特征子集进行选择,采用支持向量机(SVM)分类算法对3种压力状态进行分类预测。实验结果表明,通过随机森林特征选择优化后的SVM分类,与通用的单一SVM分类算法相比,具有更好的分类识别效果,对3种压力状态的分类准确率可从78%提高至84%。
  • CACIOPPO J T and TASSINARY L G. Principles of Psychophysiology: Physical, Social, and Inferential Elements [M]. New York, NY, US, Cambridge University Press, 1990: 10-12.
    KIRSCHBAUM C, PRUSSNER J C, STONE A A, et al. Persistent high cortisol responses to repeated psychological stress in a subpopulation of healthy men[J]. Psychosomatic Medicine, 1995, 57(5): 468-474.
    MCEWEN B S and STELLAR E. Stress and the individual: Mechanisms leading to disease[J]. Archives of Internal Medicine, 1993, 153(18): 2093-2101. doi: 10.1001/archinte. 1993.00410180039004.
    LUTCHYN Y, JOHNS P, CZERWINSKI M, et al. Stress is in the eye of the beholder[C]. IEEE International Conference on Affective Computing and Intelligent Interaction (ACII), Xian, China, 2015: 119-124. doi: 10.1109/ACII.2015. 7344560.
    HAAG A, GORONZY S, SCHAICH P, et al. Emotion recognition using bio-sensors: First steps towards an automatic system[C]. Tutorial and Research Workshop on Affective Dialogue Systems, Kloster Irsee, Germany, 2004: 36-48. doi: 10.1007/978-3-540-24842-2_4.
    SANO A, PHILLIPS A J, AMY Z Y, et al. Recognizing academic performance, sleep quality, stress level, and mental health using personality traits, wearable sensors and mobile phones[C]. IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN), Cambridge, MA, USA, 2015: 1-6. doi: 10.1109/BSN.2015.7299420.
    CHOI J and GUTIERREZ-OSUNA R. Using heart rate monitors to detect mental stress[C]. IEEE Sixth International Workshop on Wearable and Implantable Body Sensor Networks, Berkeley, CA, USA, 2009: 219-223. doi: 10.1109/ BSN.2009.13.
    WIJSMAN J, GRUNDLEHNER B, LIU H, et al. Towards mental stress detection using wearable physiological sensors [C]. IEEE 33th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 2011: 1798-1801. doi: 10.1109/IEMBS.2011.6090512.
    MCDUFF D, GONTAREK S, and PICARD R. Remote measurement of cognitive stress via heart rate variability[C]. IEEE 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 2014: 2957-2960. doi: 10.1109/EMBC.2014.6944243.
    MCDUFF D J, HERNANDEZ J, GONTAREK S, et al. Cogcam: Contact-free measurement of cognitive stress during computer tasks with a digital camera[C]. Proceedings of the 2016 ACM CHI Conference on Human Factors in Computing Systems, San Jose, CA, USA, 2016: 4000-4004. doi: 10.1145/ 2858036.2858247.
    DEDOVIC K, RENWICK R, MAHANI N K, et al. The montreal imaging stress task: Using functional imaging to investigate the effects of perceiving and processing psychosocial stress in the human brain[J]. Journal of Psychiatry Neuroscience, 2005, 30(5): 319-325.
    PAN J and TOMPKINS W J. A real-time QRS detection algorithm[J]. IEEE Transactions on Biomedical Engineering, 1985, 32(3): 230-236. doi: 10.1109/TBME.1985.325532.
    BERNTSON G G, QUIGLEY K S, JANG J F, et al. An approach to artifact identification: Application to heart period data[J]. Psychophysiology, 1990, 27(5): 586-598. doi: 10.1111/j.1469-8986.1990.tb01982.x.
    LU W, NYSTROM M M, PARIKH P J, et al. A semi- automatic method for peak and valley detection in free-breathing respiratory waveforms[J]. Medical Physics, 2006, 33(10): 3634-3636. doi: 10.1118/1.2348764.
    STEPHENS C L, CHRISTIE I C, and FRIEDMAN B H. Autonomic specificity of basic emotions: Evidence from pattern classification and cluster analysis[J]. Biological Psychology, 2010, 84(3): 463-473. doi: 10.1016/j.biopsycho. 2010.03.014.
    刘袁缘, 陈靓影, 俞侃, 等. 基于树结构分层随机森林在非约束环境下的头部姿态估计[J]. 电子与信息学报, 2015, 37(3): 543-551. doi: 10.11999/JEIT140433.
    LIU Yuanyuan, CHEN Jingying, YU Kan, et al. Head pose estimation based on tree-structure cascaded random forests in unconstrained environment[J]. Journal of Electronics Information Technology, 2015, 37(3): 543-551. doi: 10.11999/ JEIT140433.
    HOVSEPIAN K, AL,ABSI M, ERTIN E, et al. CStress: Towards a gold standard for continuous stress assessment in the mobile environment[C]. Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Osaka, Japan, 2015: 493-504. doi: 10.1145/ 2750858.2807526.
    高发荣, 王佳佳, 席旭刚, 等. 基于粒子群优化-支持向量机方法的下肢肌电信号步态识别[J]. 电子与信息学报, 2015, 37(5): 1154-1159. doi: 10.11999/JEIT141083.
    GAO Farong, WANG Jiajia, XI Xugang, et al. Gait recognition for lower extremity electromyographic signals based on PSO-SVM method[J]. Journal of Electronics Information Technology, 2015, 37(5): 1154-1159. doi: 10.11999/JEIT141083.
    陈素根, 吴小俊. 基于特征值分解的中心支持向量机算法[J]. 电子与信息学报, 2016, 38(3): 557-564. doi: 10.11999/ JEIT150693.
    CHEN Sugen and WU Xiaojun. Eigenvalue proximal support vector machine algorithm based on eigenvalue decoposition[J]. Journal of Electronics Information Technology, 2016, 38(3): 557-564. doi: 10.11999/JEIT150693.
    SETZ C, ARNRICH B, SCHUMM J, et al. Discriminating stress from cognitive load using a wearable EDA device[J]. IEEE Transactions on Information Technology in Biomedicine, 2010, 14(2): 410-417. doi: 10.1109/TITB.2009. 2036164.
  • 加载中
计量
  • 文章访问数:  1500
  • HTML全文浏览量:  201
  • PDF下载量:  301
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-15
  • 修回日期:  2017-04-19
  • 刊出日期:  2017-11-19

目录

    /

    返回文章
    返回