高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种AlGaN/GaN HEMT非线性器件模型参数提取的方法

常永明 毛维 杜林 郝跃

常永明, 毛维, 杜林, 郝跃. 一种AlGaN/GaN HEMT非线性器件模型参数提取的方法[J]. 电子与信息学报, 2017, 39(12): 3039-3044. doi: 10.11999/JEIT170097
引用本文: 常永明, 毛维, 杜林, 郝跃. 一种AlGaN/GaN HEMT非线性器件模型参数提取的方法[J]. 电子与信息学报, 2017, 39(12): 3039-3044. doi: 10.11999/JEIT170097
CHANG Yongming, MAO Wei, DU Lin, HAO Yue . A Method for AlGaN/GaN HEMT Nonlinear Device Model Parameter Extraction[J]. Journal of Electronics & Information Technology, 2017, 39(12): 3039-3044. doi: 10.11999/JEIT170097
Citation: CHANG Yongming, MAO Wei, DU Lin, HAO Yue . A Method for AlGaN/GaN HEMT Nonlinear Device Model Parameter Extraction[J]. Journal of Electronics & Information Technology, 2017, 39(12): 3039-3044. doi: 10.11999/JEIT170097

一种AlGaN/GaN HEMT非线性器件模型参数提取的方法

doi: 10.11999/JEIT170097
基金项目: 

国家自然科学基金(61574112 ),陕西省自然科学基础研究计划(605119425012)

A Method for AlGaN/GaN HEMT Nonlinear Device Model Parameter Extraction

Funds: 

The National Natural Science Foundation of China (61574112), The Natural Science Foundation Research Project of Shaanxi Provience (605119425012)

  • 摘要: 该文提出一种新的绝对误差函数,应用该函数进行非线性模型参数提取可以避免计算误差,显著降低参数提取的不准确性。由于氮化物半导体器件,尤其是AlGaN/GaN HEMT器件已经开始得到广泛应用,其模型和参数对射频和电力电子器件和电路设计至关重要,分别使用3种误差函数对 AlGaN/GaN HEMT器件模型进行了参数提取并对比,对比结果表明该文提出的误差函数更加精确和有效。同时为今后的电子器件的模型参数提取提供了一种有效且精确的方法。
  • ZHANG Zhili, YU Guotao, ZHANG Xiaodong, et al. 16.8 A/600 V AlGaN/GaN MIS-HEMTs employing LPCVD- Si3N4 as gate insulator[J]. Electronics Letters, 2015, 51(15): 1201-1203. doi: 10.1049/el.2015.1018.
    XU Ke, WANG Jianfeng, and REN Guoqiang. Progress in bulk GaN growth[J]. Chinese Physics B, 2015, 24(6): 1-16. doi: 10.1088/1674-1056/24/6/066105.
    DU Jiangfeng, CHEN Nanting, PAN Peilin, et al. High breakdown voltage AlGaN/GaN HEMT with high-K/low-K compoundpassiv-ation[J]. Electronics Letters, 2015, 51(1): 104-106. doi: 10.1049/el.2014.3252.
    HIROSHI O, KANEDA N, FUMIMASA H, et al. Vertical GaN p-n junction diodes with high breakdown voltages over 4 kV[J]. IEEE Electron Device Letters, 2015, 36(11): 1180-1182. doi: 10.1109/LED.2015. 2478907.
    SUN H, POMEROY J W, SIMON R B, et al. Temperature-dependent thermal resistance of GaN-on- diamond HEMT wafers[J]. IEEE Electron Device Letters, 2016, 37(5): 621-624. doi: 10.1109/LED.2016.2537835.
    TANG Y, SHINOHARA K, REGAN D, et al. Ultrahigh- speed GaN high-electron-mobility transistors with fT/fmax of 454/444 GHz[J]. IEEE Electron Device Letters, 2015, 36(6): 549-551. doi: 10.1109/LED.2015.2421311.
    GREENLEE J D, SPECHT P, ANDERSON T J, et al. Degradation mechanisms of 2 MeV proton irradiated AlGaN/GaN HEMTs[J]. Applied Physics Letters, 2015, 107(8): 287-290. doi: 10.1063/1.4929583.
    XI, Yuyin, HWANG Y H, HSIEH Y L, et al. Effect of proton irradiation on DC performance and reliability of circular- shaped AlGaN/GaN high electron mobility transistors[J]. ECS Transactions, 2014, 61(4): 179-185. doi: 10.1149/06104. 0179ecst.
    FITCH R C, WALKER D E, GREEN A J, et al. Implementation of high power density X-band AlGaN/GaN High Electron Mobility Transistors (HEMTs) in a millimeter- wave monolithic microwave integrated circuit (MMIC) process[J]. IEEE Electron Device Letters, 2015, 36(10): 1004-1007. doi: 10.1109/LED.2015.2474265.
    SABAT S L, COELHO L D S, and ABRAHAM A. MESFET DC model parameter extraction using quantum particle swarm optimization[J]. Microelectronics Reliability, 2009, 49(6): 660-666. doi: 10.1016/j.microrel.2009.03.005.
    HALCHIN D, MILLER M, GOLIO M, et al. HEMT models for large signal circuit simulation[C]. IEEE MTT-S International Microwave Symposium Digest, 1994, 2: 985-988. doi: 10.1109/MWSYM.1994.335191.
    WANG K and YE M. Parameter determination of Schottky- barrier diode model using differential evolution[J]. Solid- State Electronics, 2009, 53(2): 234-240. doi: 10.1016/j.sse. 2008.11.010.
    HAOUARI MERBAH M, BELHAMEL M, TOBIAS I, et al. Extraction and analysis of solar cell parameters from the illuminated currentvoltage curve[J]. Solar Energy Materials Solar Cells, 2005, 87(1-4): 225-233. doi: 10.1016/j.solmat. 2004.07.019.
    KATABOGA N, KOCKANAT S, and DOGAN H. The parameter extraction of the thermally annealed Schottky barrier diode using the modified artificial bee colony[J]. Applied Intelligence, 2013, 38(3): 279-288. doi: 10.1007/ s10489-012-0372-x.
    MEMON Q D, AHMED M M, MEMON N M, et al. An efficient mechanism to simulate DC characteristics of GaAs MESFETs using swarm optimization[C]. IEEE International Conference on Emerging Technologies, Ankara, Turkey, 2013: 1-5. doi: 10.1109/ICET. 2013.6743542.
    THAKKER R A, PATIL M B, and ANIL K G. Parameter extraction for PSP MOSFET model using hierarchical particle swarm optimization[J]. Engineering Applications of Artificial Intelligence, 2009, 22(2): 317-328. doi: 10.1016/j. engappai.2008.07.001.
    毛维, 杨翠, 郝跃, 等. 场板抑制GaN高电子迁移率晶体管电流崩塌的机理研究[J]. 物理学报, 2011, 60(1): 586-591.
    MAO Wei, YANG Cui, and HAO Yue. Study on the suppression mechanism of current collapse with field-plates in GaN high-electron mobility transistors[J]. Acta Physica Sinica, 2011, 60(1): 586-591.
    YUK K S, BRANNER G R, and MCQUATE D J. A wideband multiharmonic empirical large-signal model for high-power GaN HEMTs with self-heating and charge- trapping effects[J]. IEEE Transactions on Microwave Theory Techniques, 2009, 57(12): 3322-3332. doi: 10.1109/TMTT. 2009.2033299.
    YUK K, BRANNER G R, and MCQUATE D. An improved empirical large-signal model for high-power GaN HEMTs includin g self-heating and charge-trapping effects[C]. IEEE International Microwave Symposium Digest, Boston, America, 2009: 753-756. doi: 10.1109/MWSYM.2009. 5165806.
  • 加载中
计量
  • 文章访问数:  893
  • HTML全文浏览量:  107
  • PDF下载量:  176
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-24
  • 修回日期:  2017-09-18
  • 刊出日期:  2017-12-19

目录

    /

    返回文章
    返回