高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多天线系统中面向物理层安全的极化编码方法

白慧卿 金梁 肖帅芳 易鸣

白慧卿, 金梁, 肖帅芳, 易鸣. 多天线系统中面向物理层安全的极化编码方法[J]. 电子与信息学报, 2017, 39(11): 2587-2593. doi: 10.11999/JEIT170068
引用本文: 白慧卿, 金梁, 肖帅芳, 易鸣. 多天线系统中面向物理层安全的极化编码方法[J]. 电子与信息学报, 2017, 39(11): 2587-2593. doi: 10.11999/JEIT170068
BAI Huiqing, JIN Liang, XIAO Shuaifang, YI Ming*. Polar Code for Physical Layer Security in Multi-antenna Systems[J]. Journal of Electronics & Information Technology, 2017, 39(11): 2587-2593. doi: 10.11999/JEIT170068
Citation: BAI Huiqing, JIN Liang, XIAO Shuaifang, YI Ming*. Polar Code for Physical Layer Security in Multi-antenna Systems[J]. Journal of Electronics & Information Technology, 2017, 39(11): 2587-2593. doi: 10.11999/JEIT170068

多天线系统中面向物理层安全的极化编码方法

doi: 10.11999/JEIT170068
基金项目: 

国家863计划项目(2015AA01A708),国家青年科学基金(61501516)

Polar Code for Physical Layer Security in Multi-antenna Systems

Funds: 

The National 863 Program of China (2015AA01A708), The National Natural Science Foundation for Young Scientists of China (61501516)

  • 摘要: 该文提出一种基于多输入信道最大容量差映射的极化安全编码方法,通过适当降低信道极化速度达到提高安全传输速率的目的。首先,利用信道极化结构,将极化后的逻辑信道按信道质量划分为好信道与差信道两类;然后,通过具体的逻辑信道删除率迭代分析,提出一种能够有效提升差逻辑信道容量并降低好逻辑信道容量的最大容量差信道映射方法,达到降低信道极化速度的目的;最后,利用加权修正合法信道与窃听信道最大容量差映射结果,实现多输入信道下的极化安全编码。仿真结果表明,在极化阶数n=9的二进制删除信道下,所提方法相比随机映射与Arikan方法,安全传输速率分别由0.029, 0.004提升到了0.042,并且所提方法同样适用于衰落信道场景。
  • KOLOKOTRONIS N, KATSIONTIS A, and KALOUPTSIDIS N. Secretly pruned convolutional codes: Security analysis and performance results[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(7): 1500-1514. doi: 10.1109/ TIFS.2016.2537262.
    WANG Bo, MU Pengcheng, WANG Chao, et al. Combining dirty-paper coding and artificial noise for secrecy[C]. IEEE International Communication on Acoustics, Speech and Signal Processing, Shanghai, China, 2016: 2034-2038.
    KLINC D, JEONGSEOK H, MCLAUGHLIN S W, et al. LDPC codes for the Gaussian wiretap channel[J]. IEEE Transactions on Information Forensics Security, 2011, 6(3): 532-540. doi: 10.1109/TIFS.2011.2134093.
    BALDI M, BIANCHI M, and CHIARALUCE F. Coding with scrambling, concatenation, and HARQ for the AWGN wire-tap channel: A security gap analysis[J]. IEEE Transactions on Information Forensics Security, 2012, 7(3): 883-894. doi: 10.1109/TIFS.2012.2187515.
    YI Ming, JI Xinsheng, HUANG Kaizhi, et al. Achieving strong security based on fountain code with coset precoding[J]. IET Communications, 2014, 8(14): 2476-2483. doi: 10.1049/iet-com.2013.1033.
    ARIKAN E. Channel polarization: A method for constructing capacity-achieving codes for symmetry binary input memoryless channels[J]. IEEE Transactions on Information Theory, 2009, 55(7): 3051-3073. doi: 10.1109/ TIT.2009. 2021379.
    HAJIMOMENI M, AGHAEINIA H, KIM I M, et al. Cooperative jamming polar codes for multiple-access wiretap channels[J]. IET Communications, 2016, 10(4): 407-415. doi: 10.1049/iet-com.2015.0624.
    WEI Yipeng and ULUKUS S. Polar coding for the general wiretap channel with extensions to multiuser scenarios[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(2): 278-291. doi: 10.1109/JSAC.2015.2504275.
    ANDERSSON M, RATHI V, THOBABEN R, et al. Nested polar codes for wiretap and relay channels[J]. IEEE Communications Letters, 2010, 14(4): 752-754. doi: 10.1109/ LCOMM.2010.08.100875.
    MAHDAVIFAR H and VARDY A. Achieving the secrecy capacity of wiretap channels using polar codes[J]. IEEE Transactions on Information Theory, 2011, 57(10): 6428-6443. doi: 10.1109/TIT.2011.2162275.
    MIRGHASEMI H and BELFIORE J. The un-polarized bit-channels in the wiretap polar coding scheme[C]. International Conference on Wireless Communications, Vehicular Technology, Information Theory and Aerospace Electronic Systems, Manchester, Denmark, 2014: 1-5.
    NIU K, CHEN K, and LIN J R. Beyond turbo codes: Ratecompatible punctured polar codes[C]. IEEE International Conference on Communications, Budapest, Hungary, 2013: 3423-3427.
    易鸣, 季新生, 黄开枝, 等. 面向物理层安全的一种打孔极化编码方法[J]. 电子与信息学报. 2014, 36(12): 2835-2841. doi: 10.3724/SP.J.1146.2014.00013.
    YI Ming, JI Xinsheng, HUANG Kaizhi, et al. A method based on puncturing polar codes for physical layer security[J]. Journal of Electronics Information Technology, 2014, 36(12): 2835-2841. doi: 10.3724/SP.J.1146.2014.00013.
    GAO Y, CAI Y, SHI Q, et al. Joint transceiver designs for secure communications over MIMO relay[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Shanghai, China, 2016: 3851-3855.
    CHEN K, NIU K, and LIN J. Practical polar code construction over parallel channels[J]. IET Communications, 2013, 7(7): 620-627. doi: 10.1049/iet-com.2012.0428.
    ARIKAN E and TELATAR E. On the rate of channel polarization[C]. IEEE International Symposium on Information Theory, Seoul, South Korea, 2009: 1493-1495.
    WANG W, TEH K C, and LI K H. Artificial noise aided physical layer security in multi-antenna small-cell networks [J]. IEEE Transactions on Information Forensics and Security, 2017, 12(6): 1470-1482. doi: 10.1109/TIFS.2017. 2663336.
  • 加载中
计量
  • 文章访问数:  827
  • HTML全文浏览量:  116
  • PDF下载量:  211
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-19
  • 修回日期:  2017-05-12
  • 刊出日期:  2017-11-19

目录

    /

    返回文章
    返回