高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于空域稀疏性的方位依赖阵列误差校正算法

李存勖 陈伯孝

李存勖, 陈伯孝. 基于空域稀疏性的方位依赖阵列误差校正算法[J]. 电子与信息学报, 2017, 39(9): 2219-2224. doi: 10.11999/JEIT161318
引用本文: 李存勖, 陈伯孝. 基于空域稀疏性的方位依赖阵列误差校正算法[J]. 电子与信息学报, 2017, 39(9): 2219-2224. doi: 10.11999/JEIT161318
LI Cunxu, CHEN Baixiao. Spatial Sparsity Based Method on Calibration of Direction-dependent Array Errors[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2219-2224. doi: 10.11999/JEIT161318
Citation: LI Cunxu, CHEN Baixiao. Spatial Sparsity Based Method on Calibration of Direction-dependent Array Errors[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2219-2224. doi: 10.11999/JEIT161318

基于空域稀疏性的方位依赖阵列误差校正算法

doi: 10.11999/JEIT161318
基金项目: 

国家自然科学基金(61571344)

Spatial Sparsity Based Method on Calibration of Direction-dependent Array Errors

Funds: 

The National Natural Science Foundation of China (61571344)

  • 摘要: 针对方位依赖阵列误差的校正问题,通过引入少量精确校正的辅助阵元,该文给出一种基于空域稀疏性的方位依赖阵列误差校正算法。将受方位依赖阵列误差扰动的阵列流型表示为理想情况下的阵列流型与幅相误差系数矩阵的乘积形式。同时利用接收信号的空域稀疏性,对接收信号进行稀疏表示,将阵列误差自校正问题转化为一个二元最优化问题,再通过交替迭代的优化方式求得两个优化变量的最优解,从而实现了信号方位与方位依赖阵列误差的联合估计。该文所提算法相比于已有算法性能提升明显,参数估计性能优于传统算法且接近参数估计的Cramer-Rao下界,仿真实验也验证了算法的有效性和优越性。
  • FRIEDLANDER B. A sensitivity analysis of the MUSIC algorithm[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1990, 38(10): 1740-1751. doi: 10.1109/29. 60105.
    SCHMIDT R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276-280. doi: 10.1109/TAP.1986. 1143830.
    FERREOL A, LARZABAL P and VIBERG M. On the asymptotic performance analysis of subspace DOA estimation in the presence of modeling errors: Case of MUSIC [J]. IEEE Transactions on Signal Processing, 2006, 54(3): 907-920. doi: 10.1109/TSP.2005.861798.
    DAI Z, SU W, GU H, et al. Sensor gain-phase errors estimation using disjoint sources in unknown directions[J]. IEEE Sensors Journal, 2016, 16(10): 3724-3730. doi: 10.1109 /JSEN.2016.2531282.
    于斌, 宋铮, 张军, 等. 阵列天线阵元位置误差的一种有源校正方法[J]. 雷达科学与技术, 2004, 2(5): 315-320. doi: 10.3969 /j.issn.1672-2337.2004.05.013.
    YU Bing, SONG Zheng, ZHANG Jun, et al. A new technique for calibrating position uncertainty of sensor array using signal sources[J]. Radar Science and Technology, 2004, 2(5): 315-320. doi: 10.3969/j.issn.1672-2337.2004.05.013.
    Li J, JIN M, ZHENG Y, et al. Transmit and receive array gain-phase error estimation in bistatic MIMO radar[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14(3): 32-35. doi: 10.1109/LAWP.2014.2354334.
    王布宏, 王永良, 陈辉, 等. 均匀线阵互耦条件下的鲁棒DOA估计及互耦自校正[J]. 中国科学E辑: 技术科学, 2004, 34(2): 229-240. doi: 10.3321/j.issn:1006-9275.2004.02.010.
    WANG Buhong, WANG Yongliang, CHEN Hui, et al. Robust DOA estimation and mutual coupling self-calibration algorithm for uniform linear array[J]. Science in China Series E: Technological Sciences, 2004, 34(2): 229-240. doi: 10.3321/ j.issn:1006-9275.2004.02.010.
    王布宏, 王永良, 陈辉, 等. 方位依赖阵元幅相误差校正的辅助阵元法[J]. 中国科学E辑: 技术科学, 2004, 34(8): 906-918. doi: 10.3321/j.issn:1006-9275.2004.08.006.
    WANG Buhong, WANG Yongliang, CHEN Hui, et al. Array calibration of angularly dependent gain and phase uncertainties with carry-on instrumental sensors[J]. Science in China Series E: Technological Sciences, 2004, 34(8): 906-918. doi: 10.3321/j.issn:1006-9275.2004.08.006.
    王鼎, 潘苗, 吴瑛, 等. 基于辅助阵元的方位依赖幅相误差最大似然自校正: 针对确定信号模型[J]. 通信学报, 2011, 32(2): 34-41. doi: 10.3969/j.issn.1000-436X.2011.02.005.
    WANG D, PAN M, WU Y, et al. Maximum likelihood self- calibration for direction-dependent gain-phase errors with carry-on instrumental sensors: Case of deterministic signal model[J]. Journal on Communications, 2011, 32(2): 34-41. doi: 10.3969/j.issn.1000-436X.2011.02.005.
    LEI W and CHEN B. High-resolution DOA estimation for closely spaced correlated signals using unitary sparse Bayesian learning[J]. Electronics Letters, 2015, 51(3): 285-287. doi: 10.1049/el.2014.1317.
    YANG Z, XIE L, and ZHANG C. Off-grid direction of arrival estimation using sparse Bayesian inference[J]. IEEE Transactions on Signal Processing, 2013, 61(1): 38-43. doi: 10.1109/TSP.2012.2222378.
    WU J Q, ZHU W, and CHEN B. Compressed sensing techniques for altitude estimation in multipath conditions[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3): 1891-1900. doi: 10.1109/TAES.2015.130841.
    林波, 张增辉, 朱炬波, 等. 基于压缩感知的DOA估计稀疏化模型与性能分析[J]. 电子与信息学报, 2014, 36(3): 589-594. doi: 10.3724/SP.J.1146.2013.00149.
    LIN Bo, ZHANG Zenghui, ZHU Jubo, et al. Sparsity model and perfomance analysis of DOA estimation with compressive sensing[J]. Journal Electronics Information Technology, 2014, 36(3): 589-594. doi: 10.3724/SP.J.1146.2013.00149.
    ZHENG Y and CHEN B. Altitude measurement of low-angle target in complex terrain for very high-frequency radar[J]. IET Radar, Sonar Navigation, 2015, 9(8): 967-973. doi: 10.1049/iet-rsn.2014.0544.
    KAUR A and BUDHIRAJA S. Sparse signal reconstruction via orthogonal least squares[C]. 2014 Fourth International Conference on Advanced Computing Communication Technologies, Rohtak, 2014: 133-137. doi: 10.1109/ACCT. 2014.49.
  • 加载中
计量
  • 文章访问数:  1171
  • HTML全文浏览量:  146
  • PDF下载量:  251
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-08
  • 修回日期:  2017-03-30
  • 刊出日期:  2017-09-19

目录

    /

    返回文章
    返回