高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Kempe变换理论研究进展

许进 刘小青

许进, 刘小青. Kempe变换理论研究进展[J]. 电子与信息学报, 2017, 39(6): 1493-1502. doi: 10.11999/JEIT161299
引用本文: 许进, 刘小青. Kempe变换理论研究进展[J]. 电子与信息学报, 2017, 39(6): 1493-1502. doi: 10.11999/JEIT161299
XU Jin, LIU Xiaoqing. Research Progress on the Theory of Kempe Changes[J]. Journal of Electronics & Information Technology, 2017, 39(6): 1493-1502. doi: 10.11999/JEIT161299
Citation: XU Jin, LIU Xiaoqing. Research Progress on the Theory of Kempe Changes[J]. Journal of Electronics & Information Technology, 2017, 39(6): 1493-1502. doi: 10.11999/JEIT161299

Kempe变换理论研究进展

doi: 10.11999/JEIT161299
基金项目: 

国家973计划项目(2013CB329600),国家自然科学基金(61372191, 61472012, 61472433, 61572046, 61502012, 61572492, 61572153, 61402437)

Research Progress on the Theory of Kempe Changes

Funds: 

The National 973 Program of China (2013CB329600), The National Natural Science Foundation of China (61372191, 61472012, 61472433, 61572046, 61502012, 61572492, 61572153, 61402437)

  • 摘要: 给定一个图G及它的一个正常顶点着色f, G中所有着两种颜色之一的顶点构成的顶点子集导出的子图称为G的一个2-色导出子图,该2-色导出子图的分支称为G的一个2-色分支。Kempe变换是指将图G的某个2-色分支实施颜色互换。自从1879年KEMPE引入Kempe变换用于证明四色猜想至今,有众多学者从不同的角度对Kempe变换展开了研究。该文总结了Kempe变换的一些基本性质;对已有的一些重要成果进行了较为详细的综述;针对MEYNIEL定理,即每个平面图的所有5-着色构成一个Kempe等价类,给出了一个新的更加简短的证明方法;提出了一个与着色类型相关的问题,意在探索不同Kempe等价类之间的关系,以助于Kempe变换的进一步研究。
  • KEMPE A B. On the geographical problem of the four colors[J]. American Journal of Mathematics, 1879, 2(3): 193-200. doi: 10.2307/2369235.
    BONDY J A and MURTY U S R. Graph Theory[M]. New York, USA, Springer, 2008: 1-581.
    HEAWOOD P J. Map colour theorem[J]. The Quarterly Journal of Mathematics, 1890, 24: 332-338.
    MUHLENTHALER M and WANKA R. The connectedness of clash-free timetables[C]. 10th International Conference of the Practice and Theory of Automated Timetabling PATAT 2014, York, United Kindom, 2014: 330-346.
    WANG J S, SWENDSEN R H, and KOTECKY R. Antiferromagnetic potts models[J]. Physical Review Letters, 1989, 63(2): 109-112.
    WANG J S, SWENDSEN R H, and KOTECK R. Three-state antiferromagnetic potts models: A monte carlo study[J]. Physical Review B Condensed Matter, 1990, 42(4): 2465-2474.
    VIGODA E. Improved bounds for sampling colorings[J]. Journal of Mathematical Physics, 41(3): 1555-1569. doi: 10. 1063/1.533196.
    许进. 极大平面图的结构与着色理论(4): -运算与Kempe等价类[J]. 电子与信息学报, 2016, 38(7): 1557-1585. doi: 10.11999/JEIT160483.
    XU J. Theory on structure and coloring of maximal planar graphs (4): -operations and Kempe equivalent classes[J]. Journal of Electronics Information Technology, 2016, 38(7): 1557-1585. doi: 10.11999/JEIT160483.
    MOHAR B. Kempe Equivalence of Colorings[M]. Graph Theory in Paris. Birkhuser Basel, 2006: 287-297. doi: 10.1007/978-3-7643-7400-6_22.
    FISK S. Geometric coloring theory[J]. Advances in Mathematics, 1977, 24(3): 298-340. doi: 10.1016/0001-8708 (77)90061-5.
    MEYNIEL H. Les 5-colorations d,un graphe planaire forment une classe de commutation unique[J]. Journal of Combinatorial Theory Series B, 1978, 24(3): 251-257. doi: 10.1016/0095-8956(78)90042-4.
    VERGNAS M L and MEYNIEL H. Kempe classes and the hadwiger conjecture[J]. Journal of Combinatorial Theory Series B, 1981, 31(1): 95-104. doi: 10.1016/S0095-8956(81) 80014-7.
    BERTSCHI M E. Perfectly contractile graphs[J]. Journal of Combinatorial Theory, Series B, 1990, 50(2): 222-230. doi: 10.1016/0095-8956(90)90077-D.
    FEGHALI C, JOHNSON M, and PAULUSMA D. Kempe equivalence of colourings of cubic graphs[J]. Electronic Notes in Discrete Mathematics, 2015, 49: 243-249. doi: 10.1016/ j.endm.2015.06.034.
    BONAMY M, BOUSQUET N, FEGHALI C, et al. On a conjecture of mohar concerning Kempe equivalence of regular graphs[J]. Discrete Mathematics. arXiv:1510.06964v3 [cs.DM] 22 Sep 2016.
    MCDONALD J, MOHAR B, and SCHEIDE D. Kempe equivalence of edge-colorings in subcubic and subquartic graphs[J]. Journal of Graph Theory, 2012, 70(2): 226-239. doi: 10.1002/jgt.20613.
    BELCASTRO S M and HAAS R. Counting edge-Kempe- equivalence classes for 3-edge-colored cubic graphs[J]. Discrete Mathematics, 2014, 325(13): 77-84. doi: 10.1016/ j.disc.2014.02.014.
    HEUVEL JAN VAN DEN. The complexity of change[J]. Surveys in Combinatorics. arXiv: 1312.2816v1[cs.DM] 10 Dec 2013.
    CERECEDA L, HEUVEL J V D, and JOHNSON M. Connectedness of the graph of vertex-colourings[J]. Discrete Mathematics, 2008, 308(5/6): 913-919. doi: 10.1016/j.disc. 2007.07.028.
    CERECEDA L, HEUVEL J VAN DEN, and JOHNSON M. Finding paths between 3-colorings[J]. Journal of Graph Theory, 2011, 67(1): 69-82.
    BONSMA P and CERECEDA L. Finding paths between graph colourings: PSPACE-completeness and superpolynominall distances[J]. Theoretical Computer Science, 2007, 410(50): 738-749. doi: 10.1016/j.tcs.2009.08. 023.
    JERRUM M. A very simple algorithm for estimating the number of -colorings of a low-degree graph[J]. Random Structures Algorithms, 1995, 7(2): 157-165.
    CERECEDA L. Mixing graph colourings[D]. [Ph.D. dissertation], London School of Economics and Political Science, 2007.
    BONAMY M and BOUSQUET N. Recoloring bounded treewidth graphs[J]. Electronic Notes in Discrete Mathematics, 2013, 44(5): 257-262. doi: 10.1016/j.endm. 2013.10.040.
    BONAMY M, JOHNSON M, LIGNOS I M, et al. Reconfiguration graphs for vertex colourings of chordal and chordal bipartite graphs[J]. Journal of Combinatorial Optimization, 2014, 27: 132-143. doi: 10.1007/s10878-012- 9490-y.
    FEGHALI C, JOHNSON M, and PAULUSMA D. A reconfigurations analogue of brooks theorem[J]. Journal of Graph Theory, 2015, 8635: 287-298. doi: 10.1007/978-3- 662-44465-8_25.
    BOUSQUET N and PERARNAU G. Fast recoloring of sparse graphs[J]. European Journal of Combinatorics, 2016, 52A: 1-11. doi: 10.1016/j.ejc.2015.08.001.
  • 加载中
计量
  • 文章访问数:  1184
  • HTML全文浏览量:  177
  • PDF下载量:  421
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-28
  • 修回日期:  2017-01-03
  • 刊出日期:  2017-06-19

目录

    /

    返回文章
    返回