高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于差集构造零相关区高斯整数序列集

刘涛 许成谦 李玉博

刘涛, 许成谦, 李玉博. 基于差集构造零相关区高斯整数序列集[J]. 电子与信息学报, 2017, 39(9): 2277-2281. doi: 10.11999/JEIT161177
引用本文: 刘涛, 许成谦, 李玉博. 基于差集构造零相关区高斯整数序列集[J]. 电子与信息学报, 2017, 39(9): 2277-2281. doi: 10.11999/JEIT161177
LIU Tao, XU Chengqian, LI Yubo. Construction of Zero Correlation Zone Gaussian Integer Sequence Sets Based on Difference Sets[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2277-2281. doi: 10.11999/JEIT161177
Citation: LIU Tao, XU Chengqian, LI Yubo. Construction of Zero Correlation Zone Gaussian Integer Sequence Sets Based on Difference Sets[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2277-2281. doi: 10.11999/JEIT161177

基于差集构造零相关区高斯整数序列集

doi: 10.11999/JEIT161177
基金项目: 

国家自然科学基金(61671402, 61501395),河北省自然科学基金(F2015203150, F2015203204),河北省高等学校科学研究计划(QN2014027)

Construction of Zero Correlation Zone Gaussian Integer Sequence Sets Based on Difference Sets

Funds: 

The National Natural Science Foundation of China (61671402, 61501395) , The Natural Science Foundation of Hebei Province (F2015203150, F2015203204), The Natural Science Research Programs of Hebei Educational Committee (QN2014027)

  • 摘要: 该文给出一类零相关区高斯整数序列的直接构造法。该方法基于差集,利用移位序列得到一类零相关区高斯整数序列集,并且序列集的零相关区长度以及元素取值可灵活设定。由于差集的研究成果非常丰富,因此该方法可以为CDMA通信系统提供大量零相关区高斯整数序列集。
  • using Fourier duals of sparse perfect Gaussian integer sequences[C]. 2016 IEEE International Conference on
    WANG Senhung and LI Chihpeng. Novel MC-CDMA system
    Communications, Kuala Lumpur, Malaysia, 2016: 1-6. doi: 10.1109/ICC.2016.7511167.
    FAN Pingzhi and DARNELL M. Maximual length sequences over Gaussian integers[J]. Electronics Letters, 1994, 30(16): 1286-1287. doi: 10.1049/el:19940913.
    HU Weiwen, WANG Senhung, and LI Chihpeng. Gaussian integer sequences with ideal periodic autocorrelation functions[J]. IEEE Transactions on Signal Processing, 2012, 60(11): 6074-6079. doi: 10.1109/TSP.2012.2210550.
    CHEN Xinjiao, LI Chunlei, and RONG Chunming. Perfect Gaussian integer sequences from cyclic difference sets[C]. 2016 IEEE International Symposium on Information Theory, Barcelona, Spain, July 2016: 115-119. doi: 10.1109/ISIT. 2016.7541272.
    LEE Chongdao, LI Chihpeng, CHANG Hohsuan, et al. Further results on degree-2 perfect Gaussian integer sequences[J]. IET Communications, 2016, 10(12): 1542-1552. doi: 10.1049/iet-com.2015.1144.
    YANG Yang, TANG Xiaohu, and ZHOU Zhengchun. Perfect Gaussian integer sequences of odd prime length[J]. IEEE Signal Processing Letters, 2012, 19(10): 615-618. doi: 10.1109/LSP.2012.2209642.
    LEE Chongdao, HUANG Yupei, CHANG Yaotsu, et al. Perfect Gaussian integer sequences of odd period 2m-1[J]. IEEE Signal Processing Letters, 2015, 22(7): 881-885. doi: 10.1109/LSP.2014.2375313.
    PEI Soochang and CHANG Kuowei. Perfect Gaussian integer sequences of arbitrary length[J]. IEEE Signal Processing Letters, 2015, 22(8): 1040-1044. doi: 10.1109/LSP.2014. 2381642.
    CHANG Hohsuan, LI Chihpeng, LEE Chongdao, et al. Perfect Gaussian integer sequences of arbitrary composite length[J]. IEEE Transactions on Information Theory, 2015, 61(7): 4107-4115. doi: 10.1109/TIT.2015.2438828.
    陈晓玉, 许成谦, 李玉博. 新的完备高斯整数序列的构造方法 [J]. 电子与信息学报, 2014, 36(9): 2081-2085. doi: 10.3724/ SP.J.1146.2013.01697.
    CHEN Xiaoyu, XU Chengqian, and LI Yubo. New constructions of perfect Gaussian integer sequences[J] Journal of Electronics Information Technology, 2014, 36(9): 2081-2085. doi: 10.3724/SP.J.1146.2013.01697.
    WANG Senhung, LI Chihpeng, CHANG Hohsuan, et al. A systematic method for constructing sparse Gaussian integer sequences with ideal periodic autocorrelation functions[J]. IEEE Transactions on Communications, 2016, 64(1): 365-376. doi: 10.1109/TCOMM.2015.2498185.
    PENG Xiuping and XU Chengqian. New constructions of perfect Gaussian integer sequences of even length[J]. IEEE Communications Letters, 2014, 18(9): 1547-1550. doi: 10. 1109/LCOMM.2014.2336840.
    ZHOU Zhengchun and TANG Xiaohu. A new class of sequences with zero or low correlation zone based on interleaving technique[J]. IEEE Transactions on Information Theory, 2008, 54(9): 4267-4273. doi: 10.1109/TIT.2008. 928256.
    李玉博, 许成谦. 交织法构造移位不等价的ZCZ/LCZ序列集[J]. 电子学报, 2011, 39(4): 796-802.
    LI Yubo and XU Chengqian. Construction of cyclically distinct ZCZ/LCZ sequence sets based on interleaving technique[J]. Acta Electronica Sinica, 2011, 39(4): 796-802.
    刘凯, 姜昆, 交织法构造高斯整数零相关区序列集[J]. 电子与信息学报, 2017, 39(2): 328-334. doi: 10.11999/JEIT160276.
    LIU Kai and JIANG Kun. Construction of Gaussian integer sequence sets with zero correlation zone based on interleaving technique[J]. Journal of Electronics Information Technology, 2017, 39(2): 328-334. doi: 10.11999/JEIT160276.
    CHEN Xiaoyu, KONG Deming, XU Chengqian, et al. Constructions of Gaussian integer sequences with zero corelation zone[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2016, E99-A(6): 1260-1263. doi: 10.1587/transfun.E99.A.1260.
    LI Yubo and XU Chengqian. A new construction of zero correlation zone Gaussian integer sequence sets[J]. IEEE Communications Letters, 2016. 20(12): 2418-2421. doi: 10. 1109/LCOMM.2016.2609383.
    TANG Xiaohu, FAN Pingzhi, and MATSUFUJI Shinya. Lower bounds on correlation of spreading sequence set with low or zero correlation zone[J]. Electronics Letters, 2000, 36(6): 551-552. doi: 10.1049/el:20000462.
  • 加载中
计量
  • 文章访问数:  1136
  • HTML全文浏览量:  104
  • PDF下载量:  228
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-02
  • 修回日期:  2017-04-01
  • 刊出日期:  2017-09-19

目录

    /

    返回文章
    返回