高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于模糊核聚类和支持向量机的鲁棒协同推荐算法

伊华伟 张付志 巢进波

伊华伟, 张付志, 巢进波. 基于模糊核聚类和支持向量机的鲁棒协同推荐算法[J]. 电子与信息学报, 2017, 39(8): 1942-1949. doi: 10.11999/JEIT161154
引用本文: 伊华伟, 张付志, 巢进波. 基于模糊核聚类和支持向量机的鲁棒协同推荐算法[J]. 电子与信息学报, 2017, 39(8): 1942-1949. doi: 10.11999/JEIT161154
YI Huawei, ZHANG Fuzhi, Chao Jinbo. Robust Collaborative Recommendation Algorithm Based on Fuzzy Kernel Clustering and Support Vector Machine[J]. Journal of Electronics & Information Technology, 2017, 39(8): 1942-1949. doi: 10.11999/JEIT161154
Citation: YI Huawei, ZHANG Fuzhi, Chao Jinbo. Robust Collaborative Recommendation Algorithm Based on Fuzzy Kernel Clustering and Support Vector Machine[J]. Journal of Electronics & Information Technology, 2017, 39(8): 1942-1949. doi: 10.11999/JEIT161154

基于模糊核聚类和支持向量机的鲁棒协同推荐算法

doi: 10.11999/JEIT161154
基金项目: 

国家自然科学基金(61379116),河北省自然科学基金(F2015203046),辽宁省教育厅科学研究项目(L2015240)

Robust Collaborative Recommendation Algorithm Based on Fuzzy Kernel Clustering and Support Vector Machine

Funds: 

The National Natural Science Foundation of China (61379116), The Natural Science Foundation of Hebei Province (F2015203046), The Scientific Research Foundation of Liaoning Provincial Education Department (L2015240)

  • 摘要: 该文针对现有推荐算法在面对托攻击时鲁棒性不高的问题,提出一种基于模糊核聚类和支持向量机的鲁棒推荐算法。首先,根据攻击概貌间高度相关的特性,利用模糊核聚类方法在高维特征空间对用户概貌进行聚类,实现攻击概貌的第1阶段检测。然后,利用支持向量机分类器对含有攻击概貌的聚类进行分类,实现攻击概貌的第2阶段检测。最后,基于攻击概貌检测结果,通过构造指示函数排除攻击概貌在推荐过程中产生的影响,并引入矩阵分解技术设计相应的鲁棒协同推荐算法。实验结果表明,与现有的基于矩阵分解模型的推荐算法相比,所提算法不但具有很好的鲁棒性,而且准确性也有提高。
  • 孟祥武, 刘树栋, 张玉洁, 等. 社会化推荐系统研究[J]. 软件学报, 2015, 26(6): 1356-1372.
    MENG Xiangwu, LIU Shudong, ZHANG Yujie, et al. Research on social recommendation systems[J]. Journal of Software, 2015, 26(6): 1356-1372.
    CHEN L, CHEN G L, WANG F. Recommender systems based on user reviews: The state of the art[J]. User Modeling and User-Adapted Interaction, 2015, 25(2): 99-154. doi: 10.1007/s11257-015-9155-5.
    GUNES I, KALELI C, BILGE A, et al. Shilling attacks against recommender systems: A comprehensive survey[J]. Artificial Intelligence Review, 2014, 42(4): 767-799. doi: 10.1007/s10462-012-9364-9.
    O'MAHONY M, HURLEY N, KUSHMERICK N, et al. Collaborative recommendation: A robustness analysis[J]. ACM Transactions on Internet Technology, 2004, 4(4): 344-377. doi: 10.1145/1031114.1031116.
    MEHTA B and NEJDL W. Attack resistant collaborative filtering[C]. Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Singapore, 2008: 75-82.
    LEE J and ZHU D. Shilling attack detection-a new approach for a trustworthy recommender system[J]. Informs Journal on Computing, 2012, 24(1): 117-131. doi: 10.1287/ijoc.1100. 0440.
    BHAUMIK R, MOBASHER B, and BURKE R. A clustering approach to unsupervised attack detection in collaborative recommender systems[C]. Proceedings of the 7th International Conference on Data Mining, IEEE Computer Society, Washington: 2011: 181-187.
    李聪, 骆志刚, 石金龙. 一种探测推荐系统托攻击的无监督算法[J]. 自动化学报, 2011, 37(2): 160-167.
    LI Cong, LUO Zhigang, and SHI Jinlong. An unsupervised algorithm for detecting shilling attacks on recommender systems[J]. Acta Automatica Sinica, 2011, 37(2): 160-167.
    WILLIAMS C A, MOBASHER B, BURKE R, et al. Detecting profile injection attacks in collaborative filtering: A classification-based approach[C]. Proceedings of the 8th Knowledge Discovery on the Web International Conference on Advances in Web Mining and Web Usage Analysis, Berlin, 2007: 167-186.
    WILLIAMS C, MOBASHER B, and BURKE R. Defending recommender systems: Detection of profile injection attacks [J]. Service Oriented Computing and Applications, 2007, 1(3): 157-170. doi: 10.1007/s11761-007-0013-0.
    HE F, WANG X, and LIU B. Attack detection by rough set theory in recommendation system[C]. 2010 IEEE International Conference on Granular Computing, Washington, 2010: 692-695.
    伍之昂, 庄毅, 王有权, 等. 基于特征选择的推荐系统托攻击检测算法[J]. 电子学报, 2012, 40(8): 1687-1693. doi: 10.3969/ j.issn.0372-2112.2012.08.031.
    WU Zhiang, ZHUANG Yi, WANG Youquan, et al. Shilling attack detection based on feature selection for recommendation systems[J]. Acta Electronica Sinica, 2012, 40(8): 1687-1693. doi: 10.3969/j.issn.0372-2112.2012.08.031.
    李文涛, 高旻, 李华, 等. 一种基于流行度分类特征的托攻击检测算法. 自动化学报, 2015, 41(9): 1563-1575.
    LI Wentao, GAO Min, LI Hua, et al. An shilling attack detection algorithm based on popularity degree features[J]. Acta Automatica Sinica, 2015, 41(9): 1563-1575. doi: 10.16383/j.aas.2015.c150040.
    ZHANG F and ZHOU Q. Ensemble detection model for profile injection attacks in collaborative recommender systems based on BP neural network[J]. Iet Information Security, 2015, 9(1): 24-31. doi: 10.1049/iet-ifs.2013.0145.
    SANDVIG J J, MOBASHER B, and BURKE R. A survey of collaborative recommendation and the robustness of model-based algorithms[J]. Bulletin of the Technical Committee on Data Engineering, 2008, 31(2): 3-13.
    SANDVIG J J, MOBASHER B, and BURKE R. Robustness of collaborative recommendation based on association rule mining[C]. Proceedings of the 2007 ACM Conference on Recommender Systems, Minneapolis, 2007: 105112.
    MEHTA B, HOFMANN T, and NEJDL W. Robust collaborative filtering[C]. ACM Conference on Recommender Systems, Recsys, Minneapolis, MN, USA, 2007: 49-56.
    CHENG Z and HURLEY N. Robust collaborative recommendation by least trimmed squares matrix factorization[C]. Proceedings of the 22nd IEEE International Conference on Tools with Artificial Intelligence, Arras, France, 2010: 105-112.
    YI Huawei and ZHANG Fuzhi. A robust collaborative recommendation algorithm based on k-distance and Tukey M-estimator[J]. China Communications, 2014, 11(9): 119-130. doi: 10.1109/CC.2014.6969776.
    李聪, 骆志刚. 用于鲁棒协同推荐的元信息增强变分贝叶斯矩阵分解模型[J]. 自动化学报, 2011, 37(9): 1067-1076.
    LI Cong and LUO Zhigang. A metadata-enhanced variational Bayesian matrix factorization model for robust collaborative recommendation[J]. Acta Automatica Sinica, 2011, 37(9): 1067-1076.
    张燕平, 张顺, 钱付兰, 等. 基于用户声誉的鲁棒协同推荐算法[J]. 自动化学报, 2015, 41(5): 1004-1012. doi: 10.16383/j. aas.2015.c140073.
    ZHANG Yanping, ZHANG Shun, QIAN Fulan, et al. Robust collaborative recommendation algorithm based on users reputation[J]. Acta Automatica Sinica, 2015, 41(5): 1004-1012. doi: 10.16383/j.aas.2015.c140073.
    李改, 李磊. 鲁棒的单类协同排序算法[J]. 自动化学报, 2015, 41(2): 405-418. doi: 10.16383/j.aas.2015.c140231.
    LI Gai and LI Lei. Robust ranking algorithms for one-class collaborative filtering[J]. Acta Automatica Sinica, 2015, 41(2): 405-418. doi: 10.16383/j.aas.2015.c140231.
    YI H and ZHANG F. Robust recommendation algorithm based on the identification of suspicious users and matrix factorization[J]. Journal of Information and Computational Science, 2014, 11(13): 4769-4777. doi: 10.12733/ JICS20104307.
    RICCI F, SHAPIRA B, and ROKACH L. Recommender Systems Handbook[M]. New York, Springer US, 2015: 961-995. doi: 10.1007/978-1-4899-7637-6_28.
    DESHPANDE M and KARYPIS G. Item-based top-N recommendation algorithms[J]. ACM Transactions on Information Systems, 2004, 22(1): 143-177.
  • 加载中
计量
  • 文章访问数:  1330
  • HTML全文浏览量:  153
  • PDF下载量:  394
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-27
  • 修回日期:  2017-04-19
  • 刊出日期:  2017-08-19

目录

    /

    返回文章
    返回