高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于PGBN模型的SAR图像目标识别方法

郭丹丹 陈渤 丛玉来 文伟

郭丹丹, 陈渤, 丛玉来, 文伟. 基于PGBN模型的SAR图像目标识别方法[J]. 电子与信息学报, 2016, 38(12): 2996-3003. doi: 10.11999/JEIT161068
引用本文: 郭丹丹, 陈渤, 丛玉来, 文伟. 基于PGBN模型的SAR图像目标识别方法[J]. 电子与信息学报, 2016, 38(12): 2996-3003. doi: 10.11999/JEIT161068
GUO Dandan, CHEN Bo, CONG Yulai, WEN Wei. SAR Image Recognition Method with Poisson Gamma Belief Network Model[J]. Journal of Electronics & Information Technology, 2016, 38(12): 2996-3003. doi: 10.11999/JEIT161068
Citation: GUO Dandan, CHEN Bo, CONG Yulai, WEN Wei. SAR Image Recognition Method with Poisson Gamma Belief Network Model[J]. Journal of Electronics & Information Technology, 2016, 38(12): 2996-3003. doi: 10.11999/JEIT161068

基于PGBN模型的SAR图像目标识别方法

doi: 10.11999/JEIT161068
基金项目: 

国家自然科学基金(61372132, 61271291),新世纪优秀人才支持计划(NCET13-0945),杰出青年科学基金(61525105),青年千人计划,国防预研基金

SAR Image Recognition Method with Poisson Gamma Belief Network Model

Funds: 

The National Natural Science Foundation of China (61372132, 61271291), The Program for New Century Excellent Talents (NCET13-0945), The National Science Fund for Distinguished Young Scholars (61525105), The Program for Young Thousand Talent by Chinese Central Government

  • 摘要: 特征提取是合成孔径雷达图像目标识别的关键步骤,也是难点之一。该文提出一种基于PGBN(Poisson Gamma Belief Network)模型的SAR图像目标识别方法。PGBN模型作为一种深层贝叶斯生成网络,利用伽马分布具有的高度非线性,从复杂的SAR图像数据中获得了更具结构化的多层特征表示,这种多层特征表示有效提高了SAR图像目标识别性能。为了获得更高的训练效率和识别率,该文进一步采用朴素贝叶斯准则提出了一种对PGBN模型进行分类的方法。实验采用MSTAR的3类目标数据进行了验证,结果表明通过该方法提取的特征有更好的结构信息,对SAR图像目标识别具有较好的性能。
  • 张红, 王超, 张波. 高分辨率SAR图像目标识别[M]. 北京: 科学出版社, 2009: 5.2 节.
    ZHANG Hong, WANG Chao, and ZHANG Bo. High Resolution SAR Images Target Recognition[M]. Beijing: Science Press, 2009: 5.2 Section.
    保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2004: 1.1 节.
    BAO Zheng, XING Mengdao, and WANG Tong. Radar Imaging Technology[M]. Beijing: Publishing House of Electronics Industry, 2004: 1.1 Section.
    HE Zhiguo, LU Jun, and YAO Kuanggang. A fast SAR target recognition approach using PCA features[C]. International Conference on Image and Graphics, Chengdu, China, 2007: 580-585.
    LIN C, PENG F, WANG B H, et al. Research on PCA and KPCA self-fusion based MSTAR SAR automatic target recognition algorithm[J]. Journal of Electronic Science and Technology, 2012, 10(4): 352-357.
    宦若虹, 杨汝良. 基于ICA和SVM的SAR图像特征提取与目标识别[J]. 计算机工程, 2008, 34(13): 24-25.
    HUAN Ruohong and YANG Ruliang. SAR images feature extraction and target recognition based on ICA and SVM[J]. Computer Engineering, 2008, 34(13): 24-25.
    LEE D D and SEUNG H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401(6755): 788-791.
    LEE D D and SEUNG H S. Algorithms for non-negative matrix factorization[C]. Neural Information Processing Systems, Denver, CO, USA, 2000: 556-562.
    龙泓琳, 皮亦鸣, 曹宗杰. 基于非负矩阵分解的SAR图像目标识别[J]. 电子学报, 2010, 38(6): 1425-1429.
    LONH Honglin, PI Yiming, and CAO Zongjie . Non-negative matrix factorization for target recognition[J]. Acta Electronica Sinica, 2010, 38(6): 1425-1429.
    ZHOU Mingyuan and CARIN Lawrence. Beta-negative binomial process and Poisson factor analysis[C]. Artificial Intelligence and Statistics. La Palma, Canary Islads, Spain, 2012: 1462-1471.
    孙洪. 高分辨率SAR图像目标识别[M]. 北京: 电子工业出版社, 2013: 5.1 节.
    SUN Hong. Processing of Synthetic Aperture Radar Images [M]. Beijing: Publishing House of Electronics Industry, 2013: 5.1 Section.
    ZHOU Mingyuan, CONG Yulai, and CHEN Bo. The Poisson Gamma belief network[C]. Neural Information Processing Systems, Montreal, Canda, 2015: 562-570.
    CHEN Y, ZHAO X, and JIA X. Spectral-Spatial classification of hyperspectral data based on deep belief network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(6): 1-12. doi: 10.1109/JSTAR.2015.2388577.
    张学峰. 雷达高分辨距离像目标识别与拒判方法研究[D]. [博士论文], 西安电子科技大学, 2016: 71-73.
    ZHANG Xuefeng. Study of radar target recognition and outlier rejection based on high range resolution profiles[D]. [Ph.D. dissertation], Xi dian University, 2016: 71-73.
    LIU X, LIU R, MA J, et al. Privacy-preserving patent-centric clinical decision support system on Nave Bayes classification [J]. IEEE Journal of Biomedical Health Informatics, 2016, 20(2): 655-668. doi: 10.1109/JBHI.2015.2407157.
    CHAN Chihchung and LIN Chinjen. LIBSVM: A library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3): 1-27. doi: 10.1145/ 1961189.1961199.
    GE Hinton. A practical guide training restricted boltzmann machines[J]. Momentum, 2010, 9(1): 599-619. doi: 10.007/ 978-3-642-35289-8_32.
    丁军, 刘宏伟, 陈渤. 相似性约束的深度置信网络在SAR图像目标识别中的应用[J]. 电子与信息学报, 2016, 38(1): 91-103. doi: 10.11999/JEIT150366.
    DING Jun, LIU Hongwei, and CHEN Bo. Application of similar constraints deep belief networks in SAR image target recognition[J]. Journal of Electronics Information Technology, 2016, 38(1): 91-103. doi: 10.11999/JEIT150366.
    丁军, 刘宏伟, 王英华, 等. 一种联合阴影和目标区域图像的SAR目标识别方法[J]. 电子与信息学报, 2015, 37(3): 594-600. doi: 10.11999/JEIT140713.
    DING Jun, LIU Hongwei, WANG Yinghua, et al. The method of SAR target recognition with joint shadow region and target region image[J]. Journal of Electronics Information Technology, 2015, 37(3): 594-600. doi: 10.11999/ JEIT140713.
  • 加载中
计量
  • 文章访问数:  2154
  • HTML全文浏览量:  215
  • PDF下载量:  371
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-12
  • 修回日期:  2016-12-02
  • 刊出日期:  2016-12-19

目录

    /

    返回文章
    返回