高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于编码迁移的快速鲁棒视觉跟踪

薛模根 刘文琢 袁广林 秦晓燕

薛模根, 刘文琢, 袁广林, 秦晓燕. 基于编码迁移的快速鲁棒视觉跟踪[J]. 电子与信息学报, 2017, 39(7): 1571-1577. doi: 10.11999/JEIT160966
引用本文: 薛模根, 刘文琢, 袁广林, 秦晓燕. 基于编码迁移的快速鲁棒视觉跟踪[J]. 电子与信息学报, 2017, 39(7): 1571-1577. doi: 10.11999/JEIT160966
XUE Mogen, LIU Wenzhuo, YUAN Guanglin, QIN Xiaoyan. Fast Robust Visual Tracking Based on Coding Transfer[J]. Journal of Electronics & Information Technology, 2017, 39(7): 1571-1577. doi: 10.11999/JEIT160966
Citation: XUE Mogen, LIU Wenzhuo, YUAN Guanglin, QIN Xiaoyan. Fast Robust Visual Tracking Based on Coding Transfer[J]. Journal of Electronics & Information Technology, 2017, 39(7): 1571-1577. doi: 10.11999/JEIT160966

基于编码迁移的快速鲁棒视觉跟踪

doi: 10.11999/JEIT160966
基金项目: 

国家自然科学基金(61175035, 61379105)

Fast Robust Visual Tracking Based on Coding Transfer

Funds: 

The National Natural Science Foundation of China (61175035, 61379105)

  • 摘要: L1跟踪表示模型的稀疏性约束,使其对局部遮挡具有良好的鲁棒性,但同时也造成了跟踪速度慢的问题。针对此问题,该文提出使用编码迁移方法进行视觉跟踪。该方法利用低分辨率字典计算候选目标表示系数,并使用高分辨率字典构造观测似然,有效地减小了跟踪过程中的计算量。为了提高编码迁移的精度和字典适应背景干扰的能力,提出一种在线鲁棒判别式联合字典学习模型用于字典更新。实验结果表明所提方法具有良好的鲁棒性和较快的跟踪速度。
  • WRIGHT J, YANG A Y, GANESH A, et al. Robust face recognition via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227. doi: 10.1109/TPAMI.2008.79.
    MEI X and LING H B. Robust visual tracking using L1 minimization[C]. IEEE International Conference on Computer Vision, Kyoto, Japan, 2009: 1436-1443. doi: 10.1109/ICCV.2009.5459292.
    WANG D, LU H C, and YANG M H. Least soft-thresold squares tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 2013: 2371-2378. doi: 10.1109/CVPR.2013.307.
    ZHANG X Q, LI W, HU W M, et al. Block covariance based L1 tracker with a subtle template dictionary[J]. Pattern Recognition, 2013, 46(7): 1750-1761. doi: 10.1016/j.patcog. 2012.08.015.
    WANG L J, OUYANG W L, WANG X G, et al. Visual tracking with fully convolutional networks[C]. IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 3119-3127. doi: 10.1109/ICCV.2015. 357.
    薛模根, 朱虹, 袁广林. 基于在线判别式字典学习的鲁棒视觉跟踪[J]. 电子与信息学报, 2015, 37(7): 1654-1659. doi: 10.11999/JEIT141325.
    XUE Mogen, ZHU Hong, and YUAN Guanglin. Robust visual tracking based on online discrimination dictionary learning[J]. Journal of Electronics Information Technology, 2015, 37(7): 1654-1659. doi: 10.11999/JEIT141325.
    薛模根, 朱虹, 袁广林. 在线鲁棒判别式字典学习视觉跟踪[J]. 电子学报, 2016, 44(4): 838-845. doi: 10.3969/j.issn.0372- 2112.2016.04.012.
    XUE Mogen, ZHU Hong, and YUAN Guanglin. Online robust discrimination dictionary learning for visual tracking[J]. Acta Electronica Sinica, 2016, 44(4): 838-845. doi: 10.3969/j.issn.0372-2112.2016.04.012.
    LIU B Y, LIN Y, HUANG J Z, et al. Robust and fast collaborative tracking with two stage sparse optimization[C]. Europe Conference on Computer Vision, Crete, Greece, 2010: 624-637. doi: 10.1007/978-3-642-15561-1_45.
    MEI X, LING H B, WU Y, et al. Minimum error bounded efficient L1 tracker with occlusion detection[C]. IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, CO, USA, 2011: 1257-1264. doi: 10.1109/ CVPR. 2011.5995421.
    BAO C L, WU Y, LING H B, et al. Real time robust L1 tracker using accelerated proximal gradient approach[C]. IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, America, 2012: 1830-1837. doi: 10.1109/CVPR.2012.6247881.
    ZHANG T Z, GHANEM B, LIU S, et al. Robust visual tracking via multi-task sparse learning[J]. International Journal of Computer Vision, 2013, 101(2): 367-383. doi: 10.1109/CVPR.2012.6247908.
    袁广林, 薛模根. 基于稀疏稠密结构表示与在线鲁棒字典学习的视觉跟踪[J]. 电子与信息学报, 2015, 37(3): 536-542. doi: 10.11999/JEIT140507.
    YUAN Guanglin and XUE Mogen. Visual tracking based on sparse dense structure representation and online robust dictionary learning[J]. Journal of Electronics Information Technology, 2015, 37(3): 536-542. doi: 10.11999/JEIT140507.
    袁广林, 薛模根. 基于稀疏度约束与动态组结构稀疏编码的鲁棒视觉跟踪[J]. 电子学报, 2015, 43(8): 1499-1505. doi: 10.3969/j.issn.0372-2112.2015.08.005.
    YUAN Guanglin and XUE Mogen. Sparsity-constrained and dynamic group structured sparse coding for robust visual tracking[J]. Acta Electronica Sinica, 2015, 43(8): 1499-1505. doi: 10.3969/j.issn.0372-2112.2015.08.005.
    YANG J C, WRIGHT J, HUANG T, et al. Image super- resolution via sparse representation[J]. IEEE Transactions on Image Processing, 2010, 19(11): 2861-2873. doi: 10.1109/TIP. 2010.2050625.
    WU Y, LING H B, YU J Y, et al. Blurred target tracking by blur-driven tracker[C]. International Conference on Computer Vision, Barcelona, Spain, 2011: 1100-1107. doi: 10.1109/ICCV.2011.6126357.
    WU Y, LIM J, and YANG M H. Online object tracking: A benchmark[C]. IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 2013: 24112418. doi: 10.1109/CVPR.2013.312.
  • 加载中
计量
  • 文章访问数:  1212
  • HTML全文浏览量:  122
  • PDF下载量:  373
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-26
  • 修回日期:  2017-02-08
  • 刊出日期:  2017-07-19

目录

    /

    返回文章
    返回