高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于速度差补偿的双频连续波雷达室内人体定位方法

李方敏 夏雨晴 马小林 赵碧海

李方敏, 夏雨晴, 马小林, 赵碧海. 基于速度差补偿的双频连续波雷达室内人体定位方法[J]. 电子与信息学报, 2017, 39(6): 1432-1438. doi: 10.11999/JEIT160861
引用本文: 李方敏, 夏雨晴, 马小林, 赵碧海. 基于速度差补偿的双频连续波雷达室内人体定位方法[J]. 电子与信息学报, 2017, 39(6): 1432-1438. doi: 10.11999/JEIT160861
LI Fangmin, XIA Yuqing, MA Xiaolin, ZHAO Bihai. Indoor Human Localization Method of Dual Frequency Continuous Wave Radar with Velocity Deviation Compensation[J]. Journal of Electronics & Information Technology, 2017, 39(6): 1432-1438. doi: 10.11999/JEIT160861
Citation: LI Fangmin, XIA Yuqing, MA Xiaolin, ZHAO Bihai. Indoor Human Localization Method of Dual Frequency Continuous Wave Radar with Velocity Deviation Compensation[J]. Journal of Electronics & Information Technology, 2017, 39(6): 1432-1438. doi: 10.11999/JEIT160861

基于速度差补偿的双频连续波雷达室内人体定位方法

doi: 10.11999/JEIT160861
基金项目: 

国家自然科学基金(61373042, 61502361)

Indoor Human Localization Method of Dual Frequency Continuous Wave Radar with Velocity Deviation Compensation

Funds: 

The National Natural Science Foundation of China (61373042, 61502361)

  • 摘要: 目前,用于室内定位的雷达技术为了达到高精度而使用高带宽的调频连续波,这样不仅对设备要求高且杂波干扰大。为降低带宽开销,该文使用双频连续波比相测距机制来实现室内人体定位。在该方法中复杂的室内环境和人体变化的移动速度会造成频谱扩展,导致有效信号信噪比降低,能量发散甚至出现峰值误判,直接降低测速和定位的精度。由此,提出应用于室内环境中的基于双频连续波比相测距的局部速度差补偿算法,以校准频域信号,获取高精度的速度与距离信息。实验结果表明在设备功率提供的测距范围内固定位置均方根误差在9~14 cm内,与已有调频连续波有同等级的测距精度,最终实现了低带宽下的高精度人体定位。同时该系统的算法复杂度较低,能更好地适用于人体轨迹的实时跟踪。
  • WANG S and ZHOU G. A review on radio based activity recognition[J]. Digital Communications and Networks, 2015, 1(1): 20-29. doi: 10.1016/j.dcan.2015.02.006.
    YANG C and SHAO H R. WiFi-based indoor positioning[J]. IEEE Communications Magazine, 2015, 53(3): 150-157. doi: 10.1109/MCOM.2015.7060497.
    VAGHEFI R M, AMURU S D, JAKUBISIN D, et al. MIMO-radar-based indoor passive geolocation and tracking[C]. IEEE/ION Position, Location and Navigation Symposium (PLANS), Savannah, GA, USA, 2016: 622-629.
    ADIB F, KABELAC Z, KATABI D, et al. 3D tracking via body radio reflections[C]. 11th USENIX Symposium on Networked Systems Design and Implementation, Seatlle, WA, USA, 2014: 317-329.
    ADIB F, KABELAC Z, and KATABI D. Multi-person localization via RF body reflections[C]. 12th USENIX Symposium on Networked Systems Design and Implementation, Santa Clara, CA, USA, 2015: 279-292.
    AMIN M, ZEMANY P, SETLUR P, et al. Moving target localization for indoor imaging using dual frequency CW radars [C]. IEEE Sensor Array and Multichannel Processing, Waltham, MA, USA, 2006: 367-371.
    ZHOU C and GRIFFIN J D. Accurate phase-based ranging measurements for backscatter RFID tags[J]. IEEE Antennas and Wireless Propagation Letters, 2012, 11(1): 152-155. doi: 10.1109/LAWP.2012.2186110.
    LIU L, ZHOU F, TAO M, et al. Cross-range scaling method of inverse synthetic aperture radar image based on discrete polynomial-phase transform[J]. IET Radar, Sonar Navigation, 2015, 9(3): 333-341. doi: 10.1049/iet-rsn.2013. 0392.
    朱仁飞, 朱小鹏, 张群. 基于调频连续波信号的双基地ISAR成像研究[J]. 宇航学报, 2012, 33(2): 222-227. doi: 10.3873/ j.issn. 1000-1328.2012.02.011.
    ZHU Renfei, ZHU Xiaopeng, and ZHANG Qun. Imaging study on bi-static ISAR based on frequency modulation continuous wave[J]. Journal of Astronautics, 2012, 33(2): 222-227. doi: 10.3873/j.issn.1000-1328.2012.02.011.
    XIA X G. Discrete chirp-fourier transform and its application to chirp rate estimation[J]. IEEE Transactions on Signal Processing, 2000, 48(11): 3122-3133. doi: 10.1109/78.875469.
    ABATZOGLOU T J. Fast maximnurm likelihood joint estimation of frequency and frequency rate[J]. IEEE Transactions on Aerospace and Electronic Systems, 1986 22(6): 708-715. doi: 10.1109/TAES.1986.310805.
    LEE D and SONG K. Simulated maximum likelihood estimation for discrete choices using transformed simulated frequencies[J]. Journal of Econometrics, 2015, 187(1): 131-153. doi: 10.1016/j.jeconom.2014.12.009.
    曹延伟, 江志红. 加速运动目标的双频比相测距算法研究[J]. 电子与信息学报, 2007, 29(12): 2858-2862.
    CAO Yanwei and JIANG Zhihong. Research on algorithm of dual frequency ranging for target with acceleration[J]. Journal of Electronics Information Technology, 2007, 29(12): 2858-2862.
    SKOLNIK M, 左群声. 雷达导论[M]. 北京: 电子工业出版社, 2014: 321-340.
    SKOLNIK M and ZUO Qunsheng. Introdution to Radar Systems[M]. Beijing, Publishing House of Electronics Industry, 2014: 321-340.
    吴顺君, 梅晓春. 雷达信号处理和数据处理技术[M]. 北京: 电子工业出版社, 2008: 19-45.
    WU Shunjun and MEI Xiaochun. Radar Signal Processing and Data Processing Technology[M]. Beijing: Publishing House of Electronics Industry, 2008: 19-45.
    COSTANZO S, SPADAFORA F, MASSA G D, et al. Potentialities Of USRP-based software defined radar systems[J]. Progress in Electromagnetics Research B, 2013, 53(53): 417-435.
  • 加载中
计量
  • 文章访问数:  1282
  • HTML全文浏览量:  143
  • PDF下载量:  398
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-22
  • 修回日期:  2017-01-24
  • 刊出日期:  2017-06-19

目录

    /

    返回文章
    返回