高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双频频率选择表面及其在微带天线宽带RCS减缩中的应用

周禹龙 曹祥玉 高军 郑月军 张晨

周禹龙, 曹祥玉, 高军, 郑月军, 张晨. 双频频率选择表面及其在微带天线宽带RCS减缩中的应用[J]. 电子与信息学报, 2017, 39(6): 1446-1451. doi: 10.11999/JEIT160854
引用本文: 周禹龙, 曹祥玉, 高军, 郑月军, 张晨. 双频频率选择表面及其在微带天线宽带RCS减缩中的应用[J]. 电子与信息学报, 2017, 39(6): 1446-1451. doi: 10.11999/JEIT160854
ZHOU Yulong, CAO Xiangyu, GAO Jun, ZHENG Yuejun, ZHANG Chen. Dualband Frequncey Selective Surface and Its Application to Wideband RCS Reduction of The Microstrip Antenna[J]. Journal of Electronics & Information Technology, 2017, 39(6): 1446-1451. doi: 10.11999/JEIT160854
Citation: ZHOU Yulong, CAO Xiangyu, GAO Jun, ZHENG Yuejun, ZHANG Chen. Dualband Frequncey Selective Surface and Its Application to Wideband RCS Reduction of The Microstrip Antenna[J]. Journal of Electronics & Information Technology, 2017, 39(6): 1446-1451. doi: 10.11999/JEIT160854

双频频率选择表面及其在微带天线宽带RCS减缩中的应用

doi: 10.11999/JEIT160854
基金项目: 

国家自然科学基金 (61271100, 61471389, 61501494, 61671464)

Dualband Frequncey Selective Surface and Its Application to Wideband RCS Reduction of The Microstrip Antenna

Funds: 

The National Natural Science Foundation of China (61271100, 61471389, 61501494, 61671464)

  • 摘要: 该文设计了一种风车形双频带阻型频率选择表面(FSS) ,并将其加载到双频微带天线地板,实现宽带雷达散射截面(RCS)减缩。风车形FSS每一角都由两个相差90的半方环组成,通过电偶极子谐振和风车FSS高次模谐振实现双频阻带。仿真和实测结果表明,将该FSS单元加载到双频微带天线地板后,在5.20 GHz处,天线E面、H面前向增益基本保持不变;在10.41 GHz处,天线E面、H面前向增益提高了1.8 dBi;同时,天线单站RCS在1.0~16.8 GHz宽带内减缩效果明显,其中x极化波下最大缩减量达到28.3 dB, y极化波下最大减缩量达到36.2 dB。
  • 丁友, 李民权, 彭猛, 等. 一种新型的双频高增益天线[J]. 电子与信息学报, 2014, 36(7): 1771-1774. doi: 10.3724/SP.J. 1146.2013.01256.
    DING Y, LI M Q, PENG M, et al. Design of a noveldual-band high gain antenna[J]. Journal of Electronics Information Technology, 2014, 36(7): 1771-1774. doi: 10.3724/SP.J.1146. 2013.01256.
    HONARI M M, MIEZAVAND R, SAGHLATOON H, et al. A dual-band low-profile aperture antenna with substrate- intergrated waveguide grooves[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(4): 1561-1566. doi: 10. 1109/TAP.2016.2526610.
    SUNG Y. Compact dual-band antenna for 2.4/5.2/5.8 GHz WLAN service for laptop computer applications[J]. Microwave and Optical Technology Letters, 2015, 57(9): 2207-2213. doi: 10.1002/mop.29289.
    WIESBECK W and HEIDRICH E. Influence of antennas on the radar cross section of camouflaged aircraft[C]. International Conference Radar 92, Brighton, UK, 1992: 122-125.
    WILSEN C B and DAVIDSON D B. The radar cross section reduction of microstrip patches[C]. Proceedings of the 1996 4th IEEE AFRICON Conference, Stellenbosch, South Africa, 1996, 2: 730-733. doi: 10.1109/AFRCON.1996.562980.
    LI W Q, CAO X Y, and GAO J. A novel low RCS microstrip antenna[C]. 3rd Asia-Pacific Conference on Antennas and Propagation, Harbin, China, 2014: 495-498. doi: 10.1109/ APCAP.2014.6992536.
    LI S J, GAO J, CAO X Y, et al. Broadband and high-isolation dual-polarized microstrip antenna with low radar cross section[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13: 1413-1416. doi: 10.1109/ LAWP.2014.2339933.
    LI S J, GAO J, CAO X Y, et al. Wideband, thin, and polarization-insensitive perfect absorber based the double octagonal rings metamaterials and lumped resistances[J]. Journal of Applied Physics, 2014, 116(4): 043710. doi: 10.1063/1.4891716.
    高军, 张浩, 曹祥玉, 等. 一种双频超薄吸波结构在微带天线中的应用[J]. 西安电子科技大学学报, 2015, 42(1): 142-148. doi: 10.3969/j.issn.1001-2400.2015.01.021.
    GAO J, ZHANG H, CAO X Y, et al. Dual-band ultra-thin metamaterial absorber and its application in reducing RCS of microstrip antenna[J]. Journal of Xidian University, 2015, 42(1): 142-148. doi: 10.3969/j.issn.1001-2400.2015.01.021.
    ZHENG Y J, GAO J, CAO X Y, et al. Wideband RCS reduction of a microstrip antenna using artificial magnetic conductor structures[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 1582-1585. doi: 10.1109/ LAWP.2015.2413456.
    JIA Y T, LIU Y, GUO Y J, et al. Broadband polarization rotation reflective surfaces and their applications to RCS reduction[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(1): 179-188. doi: 10.1109/TAP.2015. 2502981.
    WU T K. Frequency Selective Surface and Grid Array[M]. NewYork: Wiley, 1995: 1-10.
    ZHENG Y J, GAO J, CAO X Y, et al. Wideband RCS reduction and gain enhancement microstrip antenna using chessboard configuration supersteate[J]. Microwave and Optical Technology Letters, 2015, 57(5): 1738-1741. doi: 10. 1002/mop.29167.
    GENOVESI S, COSTA F, and MONORCHIO A. Low-profile array with reduced radar cross section by using hybrid frequency selective surfaces[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(5): 2327-2335. doi: 10.1109/TAP.2012.2189701.
    JOOZDANI M Z, AMIRHOSSEINI M K, and ABDOLALI A. Wideband radar cross-section reduction of patch array antenna with miniaturized hexagonal loop frequency selective surface[J]. Electronics Letters, 2016, 52(9): 767-768. doi: 10.1049/el.2016.0336.
  • 期刊类型引用(11)

    1. 李思佳,陈可可,高择朋,李金果,李卓越,韩博文. 基于相位控制超构表面的OAM阵列天线RCS减缩研究. 空军工程大学学报. 2023(03): 2-9 . 百度学术
    2. 王朝辉,许河秀,逄智超,王明照,王少杰. 基于3D打印技术的任意曲面共形超表面隐身衣. 红外与毫米波学报. 2022(01): 210-217 . 百度学术
    3. 耿彦峰,丁梦洁,裴立力,李昊璇,韩丽萍,韩国瑞. 一种宽带吸波超材料在天线RCS缩减中的应用. 测试技术学报. 2022(02): 153-159 . 百度学术
    4. 周洪娟,金涛,陈铖. 电磁场数值计算仿真实验设计. 大学教育. 2021(02): 4-7 . 百度学术
    5. 刘涛,曹祥玉,高军,兰俊祥,丛丽丽. 宽带低RCS超表面天线阵设计. 电子与信息学报. 2019(09): 2095-2102 . 本站查看
    6. 周瑞城,李宗敏,郝传辉,吴曼迪,孙绪保. 一种三通带的频率选择表面. 固体电子学研究与进展. 2019(06): 431-435 . 百度学术
    7. 廖希,王洋,陈前斌,邵羽,叶志红. 基于Salisbury屏幕的UHF雷达频谱搬移. 电子与信息学报. 2018(06): 1419-1425 . 本站查看
    8. 于家傲,彭世蕤,陈晓坤,李有权. 六边形环复合吸波超材料性能的等效电路分析方法. 电子与信息学报. 2018(08): 1873-1878 . 本站查看
    9. 王利云,张国瑞,周佩珩. 基于垂直镜面RCS减缩的周期结构弯曲性能探究及设计. 通信技术. 2018(05): 1199-1204 . 百度学术
    10. 王思铭,高军,曹祥玉,郑月军,兰俊祥. 基于超表面的低雷达散射截面宽频贴片阵列天线设计. 电子与信息学报. 2018(09): 2273-2280 . 本站查看
    11. 王夫蔚,任宇辉,高宝建. 基于可重构频率选择表面的天线RCS减缩研究. 电子与信息学报. 2017(12): 2983-2989 . 本站查看

    其他类型引用(10)

  • 加载中
计量
  • 文章访问数:  1450
  • HTML全文浏览量:  167
  • PDF下载量:  433
  • 被引次数: 21
出版历程
  • 收稿日期:  2016-08-22
  • 修回日期:  2017-01-09
  • 刊出日期:  2017-06-19

目录

    /

    返回文章
    返回