高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高性能集成锁相环中低失配电荷泵的设计

施展 余隽 唐祯安 蔡泓 冯冲

施展, 余隽, 唐祯安, 蔡泓, 冯冲. 高性能集成锁相环中低失配电荷泵的设计[J]. 电子与信息学报, 2017, 39(6): 1472-1478. doi: 10.11999/JEIT160826
引用本文: 施展, 余隽, 唐祯安, 蔡泓, 冯冲. 高性能集成锁相环中低失配电荷泵的设计[J]. 电子与信息学报, 2017, 39(6): 1472-1478. doi: 10.11999/JEIT160826
SHI Zhan, YU Jun, TANG Zhen’an, CAI Hong, FENG Chong. Design of a Low-spur Charge Pump for High Performance CMOS Phase-locked Loops[J]. Journal of Electronics & Information Technology, 2017, 39(6): 1472-1478. doi: 10.11999/JEIT160826
Citation: SHI Zhan, YU Jun, TANG Zhen’an, CAI Hong, FENG Chong. Design of a Low-spur Charge Pump for High Performance CMOS Phase-locked Loops[J]. Journal of Electronics & Information Technology, 2017, 39(6): 1472-1478. doi: 10.11999/JEIT160826

高性能集成锁相环中低失配电荷泵的设计

doi: 10.11999/JEIT160826
基金项目: 

国家自然科学基金(61131004, 61274076, 61001054)

Design of a Low-spur Charge Pump for High Performance CMOS Phase-locked Loops

Funds: 

The National Natural Science Foundation of China (61131004, 61274076, 61001054)

  • 摘要: 在分析电荷泵结构、工作原理和产生杂散机理的基础上,该文提出了一种低静态电流失配、低时序失配的高性能电荷泵。此电荷泵通过减小电荷泵开关过程中时序失配和电流失配,减小了高频锁相环中的抖动和杂散。基于中芯国际0.18 m CMOS射频工艺技术和1.8 V电源电压,对采用此高性能电荷泵的锁相环进行了相位噪声仿真。仿真结果验证了这些锁相环具有低噪声特性:在480 MHz的输出频率下,二阶锁相环的周期抖动为1.05 ps,最大参考杂散为-121 dBc。
  • 黄水龙, 王志华. 快速建立时间的自适应锁相环[J]. 电子与信息学报, 2007, 29(6): 1492-1495.
    HUANG Shuilong and WANG Zhihua. An adaptive PLL architecture to achieve fast settling time[J]. Journal of Electronics Information Technology, 2007, 29(6): 1492-1495.
    李学初, 高清运, 陈浩琼, 等. CMOS集成时钟恢复电路设计[J]. 电子与信息学报, 2007, 29(6): 1496-1499.
    LI Xuechu, GAO Qingyun, CHEN Haoqiong, et al. The design of monolithic CMOS clock recovery circuit[J]. Journal of Electronics Information Technology, 2007, 29(6): 1496-1499.
    LIU L and POKHAREL R. Compact modeling of phase-locked loop frequency synthesizer for transient phase noise and jitter simulation[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2016, 35(1): 166-170. doi: 10.1109/TCAD.2015.2472018.
    GIERKINK S L J. Low-spur, low-phase-noise clock multiplier based on a combination of PLL and recirculating DLL with dual-pulse ring oscillator and self-correcting charge pump[J]. IEEE Journal of Solid-State Circuits, 2008, 43(12): 2967-2976. doi: 10.1109/JSSC.2008.2006225.
    KIM N S and RABAEY J M. A 3~10mW, 3.1~10.6 GHz integer-N QPLL with reference spur reduction technique for UWB-based cognitive radios[C]. Proceedings of the IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Phoenix, AZ, 2015: 67-70. doi: 10.1109/RFIC.2015.7337706.
    BANERJEE D. PLL Performance, Simulation and Design[M]. Texas: Dog Ear Publishing, 2006: 64-65.
    陈永聪. 集成CMOS锁相环中抑制参考杂散的设计方法[J]. 半导体学报, 2006, 27(12): 2196-2202.
    CHEN Yongcong. Design technique to restrain reference spurs in CMOS phase lock loops[J]. Journal of Semiconductors, 2006, 27(12): 2196-2202.
    RHEE W. Design of high-performance CMOS charge pumps in phase-locked loops[C]. Proceedings of the IEEE Circuits and Systems, Orlando, FL, 1999, 2: 545-548. doi: 10.1109/ ISCAS.1999.780807.
    MANIKANDAN R R and AMRUTUR B. A zero charge-pump mismatch current tracking loop for reference spur reduction in PLLs[J]. Microelectronics Journal, 2015, 46(6): 422-430. doi: 10.1016/j.mejo.2015.03.004.
    ZHANG Z, YANG J, LIU L, et al. Source-switched charge pump with reverse leakage compensation technique for spur reduction of wideband PLL[J]. Electronics Letters, 2016, 52(14): 1211-1212. doi: 10.1049/el.2016.1036.
    LI S, JIANG J, ZHOU X, et al. A low phase noise and low spur PLL frequency synthesizer for GNSS receivers[J]. Journal of Semiconductors, 2014, 35(1): 96-103. doi: 10.1088/1674-4926/35/1/015004.
    LOZADA O and ESPINOSA G. A charge pump with a 0.32% of current mismatch for a high speed PLL[J]. Analog Integrated Circuits Signal Processing, 2015, 86(2): 321-326. doi: 10.1007/s10470-015-0676-y.
    薛红, 李智群, 王志功, 等. 低杂散锁相环中的电荷泵设计[J]. 半导体学报, 2007, 28(12): 1988-1992.
    XUE Hong, LI Zhiqun, WANG Zhigong, et al. A charge pump design for low-spur PLL[J]. Journal of Semiconductors, 2007, 28(12): 1988-1992.
    CHOI Y S and HAN D H. Gain-boosting charge pump for current matching in phase-locked loop[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2006, 53(10): 1022-1025.
    GUPTA S, MONDAL S A, and RAHAMAN H. Charge pump circuit with improved absolute current deviation and increased dynamic output voltage range across PVT variations[C]. Proceedings of the 2015 IEEE Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics (PrimeAsia), Hyderabad, 2015: 32-35. doi: 10.1109/PrimeAsia.2015.7450465.
    MOON J W, CHOI K C, and CHOI W Y. A 0.4-V, 90~350-MHz PLL with an active loop-filter charge pump[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2014, 61(5): 319-323. doi: 10.1109/TCSII.2014. 2312800.
    WANG S F, HWANG T S, and WANG J J. Phase-locked loop design with fast-digital-calibration charge pump[J]. International Journal of Electronics, 2015, 103(2): 1-13. doi: 10.1080/00207217.2015.1036371.
    MANEATIS J G. Low-jitter process-independent DLL and PLL based on self-biased techniques[J]. IEEE Journal of Solid-State Circuits, 1996, 31(11): 1723-1732.
    MANEATIS J G, KIM J, MCCLATCHIE I, et al. Self-biased high-bandwidth low-jitter 1-to-4096 multiplier clock generator PLL[J]. IEEE Journal of Solid-State Circuits, 2003, 38(11): 1795-1803. doi: 10.1109/JSSC.2003.818298.
    KIM S H and CHO S B. Low phase noise and fast locking PLL frequency synthesizer for a 915 MHz ISM band[C]. Proceedings of the 2007 International Symposium on Integrated Circuits, Singapore, 2007: 592-595.
    CHU A, DEO N, AHMAD W, et al. An ultra-low power charge-pump PLL with high temperature stability in 130 nm CMOS[C]. Proceedings of the IEEE New Circuits and Systems Conference, Grenoble, 2015: 1-4. doi: 10.1109/ NEWCAS.2015.7182075.
    MENG X and LIN F. Clock generator IP design in 180 nm CMOS technology[J]. Analog Integrated Circuits Signal Processing, 2016, 87(3): 1-9. doi: 10.1007/s10470-016-0737-x.
    THIBIEROZ H. Using spectre RF noise-aware PLL methodology to predict PLL behavior accurately[OL]. https://zh.scribd.com/document/67585642/Using-Spectre-RF-Noise-Aware-PLL-Methodology-to-Predict-PLL-Behavior-Accurately, 2007.
    张昌明, 肖振宇, 曾烈光, 等. 基于IEEE 802.11ad标准的单载波60 GHz通信系统性能分析[J]. 电子与信息学报, 2012, 34(1): 218-222. doi: 10.3724/SP.J.1146.2011.00447.
    ZHANG Changming, XIAO Zhenyu, Zeng Lieguang, et al. Performance analysis of Single-Carrier (SC) 60 GHz communication system based on IEEE 802.11ad standard[J]. Journal of Electronics Information Technology, 2012, 34(1): 218-222. doi: 10.3724/SP.J.1146.2011.00447.
    马晓慧, 邹传云. 数字超宽带信号的功率谱密度[J]. 电子与信息学报, 2007, 29(8): 1877-1881.
    MA Xiaohui and ZOU Chuanyun. Power spectral density of digital ultra wide-band signals[J]. Journal of Electronics Information Technology, 2007, 29(8): 1877-1881.
  • 加载中
计量
  • 文章访问数:  1333
  • HTML全文浏览量:  135
  • PDF下载量:  330
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-03
  • 修回日期:  2017-02-08
  • 刊出日期:  2017-06-19

目录

    /

    返回文章
    返回