高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

对海雷达目标识别中全极化HRRP的特征提取与选择

范学满 胡生亮 贺静波

范学满, 胡生亮, 贺静波. 对海雷达目标识别中全极化HRRP的特征提取与选择[J]. 电子与信息学报, 2016, 38(12): 3261-3268. doi: 10.11999/JEIT160722
引用本文: 范学满, 胡生亮, 贺静波. 对海雷达目标识别中全极化HRRP的特征提取与选择[J]. 电子与信息学报, 2016, 38(12): 3261-3268. doi: 10.11999/JEIT160722
FAN Xueman, HU Shengliang, HE Jingbo. Feature Extraction and Selection of Full Polarization HRRP in Target Recognition Process of Maritime Surveillance Radar[J]. Journal of Electronics & Information Technology, 2016, 38(12): 3261-3268. doi: 10.11999/JEIT160722
Citation: FAN Xueman, HU Shengliang, HE Jingbo. Feature Extraction and Selection of Full Polarization HRRP in Target Recognition Process of Maritime Surveillance Radar[J]. Journal of Electronics & Information Technology, 2016, 38(12): 3261-3268. doi: 10.11999/JEIT160722

对海雷达目标识别中全极化HRRP的特征提取与选择

doi: 10.11999/JEIT160722
基金项目: 

国家自然科学基金(61401493),国家部委基金(9140A01010415JB11002)

Feature Extraction and Selection of Full Polarization HRRP in Target Recognition Process of Maritime Surveillance Radar

Funds: 

The National Natural Science Foundation of China (61401493), The National Ministries Foundation of China (9140A01010415JB11002)

  • 摘要: 充分、有效地利用目标全极化HRRP的特征信息是提高对海雷达目标识别率的研究热点之一。该文利用CST软件仿真建立了7类海上目标在不同方位角下的全极化HRRP数据库。在此基础上,提取了4类共39个特征。提出一种基于归一化互信息(NMI)并利用模拟退火(SA)算法进行优化的全局最优特征选择算法,并命名为NMI-SA。基于HRRP数据集以及9个UCI数据集,利用k-近邻分类器将该算法与另外3种常用的特征选择算法进行对比,结果表明新算法选择的特征具有良好的可分性和较低的冗余度,最终用于分类时的正确率总体优于其余3种算法。最后,用该算法对全极化HRRP的39个特征进行重点分析,选择出25个辨别力强、冗余度低的特征。
  • 冯博, 陈渤, 王鹏辉, 等. 利用稳健字典学习的雷达高分辨距离像目标识别算法[J]. 电子与信息学报, 2015, 37(6): 1457-1462. doi: 10.11999/JEIT141227.
    FENG Bo, CHEN Bo, WANG Penghui, et al. Radar high resolution range profile target recognition algorithm via stable dictionary learning[J]. Journal of Electronics Information Technology, 2015, 37(6): 1457-1462. doi: 10. 11999/JEIT141227.
    郭尊华, 李达, 张伯彦. 雷达高距离分辨率一维像目标识别[J]. 系统工程与电子技术, 2013, 35(1): 53-60. doi: 10.3969/j.issn. 1001-506X.2013.01.09.
    GUO Zunhua, LI Da, and ZHANG Boyan. Survey of radar target recognition using one-dimensional high range resolution profiles[J]. Systems Engineering and Electronics, 2013, 35(1): 53-60. doi: 10.3969/j.issn.1001-506X.2013.01.09.
    PICHER C and KHOTANZAD A. Nonlinear classifier combination for a maritime target recognition task[C]. Proceedings of the IEEE Radar Conference, Pasadena, 2009: 873-877. doi: 10.1109/RADAR.2009.4976923.
    刘盛启, 占荣辉, 翟庆林, 等. 基于联合稀疏性的多视全极化HRRP目标识别方法[J]. 电子与信息学报, 2016, 38(7): 1724-1730. doi: 10.11999/JEIT151019.
    LIU Shengqi, ZHAN Ronghui, ZHAI Qinglin, et al. Multi- view polarization HRRP target recognition based on joint sparsity[J]. Journal of Electronics Information Technology, 2016, 38(7): 1724-1730. doi: 10.11999/JEIT151019.
    BERIZZI F, MARTORELLA M, CAPRIA A, et al. H/ polarimetric features for man-made target classification[C]. Proceedings of the IEEE Radar Conference, Rome, 2008: 1-6. doi: 10.1109/RADAR.2008.4721003.
    杨磊, 王晓丹, 张玉玺, 等. 基于多极化特征提取和SVM的目标识别方法[J]. 现代防御技术, 2012, 40(5): 150-155. doi: 10.3969/j.issn.1009-086x.2012.05.029.
    YANG Lei, Wang Xiaodan, ZHANG Yuxi, et al. Radar target recognition approach based on multi polarization multi target feature extraction and SVM[J]. Modern Defence Technology, 2012, 40(5): 150-155. doi: 10.3969/j.issn.1009-086x.2012.05. 029.
    雷蕾, 王晓丹, 邢雅琼, 等. 结合SVM和DS证据理论的多极化HRRP分类研究[J]. 控制与决策, 2013, 28(6): 861-866. doi: 10.13195/j.cd.2013.06.63.leil.011.
    LEI Lei, WANG Xiaodan, XING Yaqiong, et al. Multi- polarized HRRP classification by SVM and DS evidence theory[J]. Control and Decision, 2013, 28(6): 861-866. doi: 10.13195/j.cd.2013.06.63.leil.011.
    郭雷. 宽带雷达目标极化特征提取与核方法识别研究[D]. [博士论文], 国防科学技术大学, 2009: 15-49.
    GUO Lei. Wideband radar target polarimetric feature extraction and recognition method based on kernel method [D]. [Ph.D. dissertation], National University of Defense Technology, 2009: 15-49.
    LIU H, SUN J, LIU L, et al. Feature selection with dynamic mutual information[J]. Pattern Recognition, 2009, 42(7): 1330-1339. doi: 10.1016/j.patcog.2008.10.028.
    UNLER A, MURAT A, and CHINNAM R B. mr 2 PSO : a maximum relevance minimum redundancy feature selection method based on swarm intelligence for support vector machine classification[J]. Information Sciences, 2011, 181(20): 4625-4641. doi: 10.1016/j.ins.2010.05.037.
    GARCIA M, GOMEZ F, MELIAN B, et al. High-dimensional feature selection via feature grouping: a variable neighborhood search approach[J]. Information Sciences, 2016, 326(C): 102-118. doi: 10.1016/j.ins.2015.07.041.
    BROWN G, POCOCK A, ZHAO M J, et al. Conditional likelihood maximization: a unifying framework for information theoretic feature selection[J]. Journal of Machine Learning Research, 2012, 13(1): 27-66.
    LYSIAK R, KURZYNSKI M, and WOLOSZYNSKI T. Optimal selection of ensemble classifiers using measures of competence and diversity of base classifiers[J]. Neurocomputing, 2014, 126(1): 29-35. doi: 10.1016/j.neucom. 2013.01.052.
    KWAK N and CHOI C H. Input feature selection for classification problems[J]. IEEE Transactions on Neural Networks, 2002, 13(1): 143-159. doi: 10.1109/72.977291.
    PENG H, LONG F, and DING C. Feature selection based on mutual information: criteria of max-dependency, max- relevance, and min-redundancy[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2005, 27(8): 1226-1238. doi: 10.1109/TPAMI.2005.159.
    ESTEVEZ P A, TESMER M, PEREZ C A, et al. Normalized mutual information feature selection[J]. IEEE Transactions on Neural Networks, 2009, 20(2): 189-201. doi: 10.1109/TNN. 2008.2005601.
    ISAKOV S V, ZINTCHENKO I N, RONNOW T F, et al. Optimised simulated annealing for icing spin glasses[J]. Computer Physics Communications, 2015, 192: 265-271. doi: 10.1016/j.cpc.2015.02.015.
  • 加载中
计量
  • 文章访问数:  1706
  • HTML全文浏览量:  168
  • PDF下载量:  352
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-07
  • 修回日期:  2016-11-01
  • 刊出日期:  2016-12-19

目录

    /

    返回文章
    返回