高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁质长旋转椭球壳体在均匀恒定磁场中产生的感应场

彭怀云 王元新 潘威炎 郭立新 张红旗 陈宇

彭怀云, 王元新, 潘威炎, 郭立新, 张红旗, 陈宇. 铁质长旋转椭球壳体在均匀恒定磁场中产生的感应场[J]. 电子与信息学报, 2017, 39(5): 1250-1255. doi: 10.11999/JEIT160683
引用本文: 彭怀云, 王元新, 潘威炎, 郭立新, 张红旗, 陈宇. 铁质长旋转椭球壳体在均匀恒定磁场中产生的感应场[J]. 电子与信息学报, 2017, 39(5): 1250-1255. doi: 10.11999/JEIT160683
PENG Huaiyun, WANG Yuanxin, PAN Weiyan, GUO Lixin, ZHANG Hongqi, CHEN Yu. Induced Fields Produced on Iron Rotation Long Ellipsoid Cavity under Uniform Constant Magnetic Field[J]. Journal of Electronics & Information Technology, 2017, 39(5): 1250-1255. doi: 10.11999/JEIT160683
Citation: PENG Huaiyun, WANG Yuanxin, PAN Weiyan, GUO Lixin, ZHANG Hongqi, CHEN Yu. Induced Fields Produced on Iron Rotation Long Ellipsoid Cavity under Uniform Constant Magnetic Field[J]. Journal of Electronics & Information Technology, 2017, 39(5): 1250-1255. doi: 10.11999/JEIT160683

铁质长旋转椭球壳体在均匀恒定磁场中产生的感应场

doi: 10.11999/JEIT160683
基金项目: 

国家863计划项目(2015SQ712378, 2015SQ 712220),中国电子科技集团公司重点实验室专项基金(A171501023)

Induced Fields Produced on Iron Rotation Long Ellipsoid Cavity under Uniform Constant Magnetic Field

Funds: 

The National 863 Program of China (2015SQ712378, (2015SQ712220), China Electronics Technology Group Corporation National Key Laboratory Special Fund (A171501023)

  • 摘要: 为了研究潜艇周围的感应场,该文将潜艇的形状理想化为一个旋转对称的长椭球壳体。该文导出了壳体内外的感应磁场表达式,采用解析方法分析讨论在外加均匀恒定磁场下,壳体上产生的总感应磁场以及各分量在不同纬度、不同放置方向和不同探测高度上的等值线分布。计算结果表明:随着传播距离的增加,感应磁场逐渐变弱。沿壳体纵轴方向(z分量)的感应磁场最显著,而沿垂直方向(x分量)的感应磁场最小。与高纬度相比,中纬度总感应磁场和各分量更容易被磁力计探测到。随着高度的增加,它们的探测范围变化不大。壳体沿南北方向放置时更容易被探测到。
  • 陈宇沁, 周宏威, 袁建生. 基于磁异常检测的潜艇探测探头类型分析[J]. 电测与仪表, 2015, 52(11): 20-24. doi: 10.3969/ j.issn.1001-1390.2015.11.005.
    CHEN Yuqin, ZHOU Hongwei, and YUAN Jiansheng. Analysis of different types of magnetic probes for submarine detection based on magnetic anomaly[J]. Electrical Measurement Instrumentation, 2015, 52(11): 20-24. doi: 10.3969/j.issn.1001-1390.2015.11.005.
    HAO Liling, LI Gang, and LIN Ling. Optimization of measurement arrangements for magnetic detection electrical impedance tomography[J]. IEEE Transactions on Bio-Medical Engineering, 2014, 61(2): 444-452. doi: 10.1109/ TBME.2013.2280632.
    陈正想, 卢俊杰. 弱磁探测技术发展现状[J]. 水雷战与舰船防护, 2011, 19(4): 1-5.
    CHEN Zhengxiang and LU Junjie. Current development of weak magnetic detection[J]. Mine Warfare Ship Self-Defence, 2011, 19(4): 1-5.
    崔国恒, 于德新. 非声探潜技术现状及其对抗措施[J]. 火力与指挥控制, 2007, 32(12): 10-13. doi: 10.3969/j.issn.1002-0640. 2007.12.003.
    CUI Guoheng and YU Dexin. Status quo of non-acoustics antisubmarine detecting technology and its countermeasures[J]. Fire Control and Command Control, 2007, 32(12): 10-13. doi: 10.3969/j.issn.1002-0640.2007. 12.003.
    艾艳辉, 赵治平. 非声探测技术面面观[J]. 水雷战与舰船防护, 2003(3): 43-46.
    AI Yanhui and ZHAO Zhiping. Outlook of non-acoustics submarine detection[J]. Mine Warfare Ship Self-Defence, 2003(3): 43-46.
    吴奕初, 胡占成, 刘海林, 等. 光磁共振实验测量地磁场方法的探究[J]. 物理实验, 2016, 36(4): 1-6. doi: 10.3969/j.issn. 1005-4642.2016. 04.001.
    WU Yichu, HU Zhancheng, LIU Hailin, et al. Measuring the geomagnetic field using optical magnetic resonance[J]. Physics Experimentation, 2016, 36(4): 1-6. doi: 10.3969/j.issn. 1005-4642.2016.04.001.
    冯亚敏, 陈聪, 冯汉臣. 潜艇腐蚀相关静态电磁场分布规律的实验验证[J]. 武汉理工大学学报(交通科学与工程版), 2016, 40(1): 140-144. doi: 10.3963/j.issn.2095-3844.2016.01.029.
    FENG Yamin, CHEN Cong, and FENG Hanchen. Experimental verification of the distribution regularities of the static corrosion-related-electromagnetic field produced by a submarine[J]. Journal of Wuhan University of Technology (Transportation Science Engineering), 2016, 40(1): 140-144. doi: 10.3963/j.issn.2095-3844.2016.01.029.
    衣军, 张朝阳, 虞伟乔. 基于地磁模拟的潜艇感应磁场测量[J]. 上海海事大学学报, 2015, 36(1): 61-64.
    YI Jun, ZHANG Chaoyang, and YU Weiqiao. Measurement of submarines induced magnetic field based on geomagnetic simulation[J]. Journal of Shanghai Maritime University, 2015, 36(1): 61-64.
    BRUNOTTE X, MEUNIER G, and BONGIRAUD J. Ship magnetizations modelling by the finite element method[J]. IEEE Transactions on Magnetics, 1993, 29(2): 1970-1975. doi: 10.1109/20.250795.
    NGUYEN T S, GUICHON J M, CHADEBEC O, et al. Ships magnetic anomaly computation with integral equation and fast multipole method[J]. IEEE Transactions on Magnetics, 2011, 47(5): 1414-1417. doi: 10.1109/TMAG.2010.2091626.
    TANRISEVEN S, CAN H, TOPAL U, et al. A low cost and simple fluxgate magnetometer implementation[C]. International Conference on Synthesis, Modeling, Analysis, and Simulation Methods and Applications to Circuit Design, Canada, 2015: 7-9.
    林钢, 杨会平, 白彦峥, 等. 高精度空间磁通门磁力计[J]. 华中科技大学学报(自然科学版), 2005, 33(12): 61-63. doi: 10.3321/j.issn.1671-4512.2005.12.019.
    LIN Gang, YANG Huiping, BAI Yanzheng, et al. Space fluxgate magnetometer with high precision[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2005, 33(12): 61-63. doi: 10.3321/ j.issn.1671-4512.2005.12.019.
    WANG Jiabo and CHEN Xi. A fluxgate magnetometer for navigation and sensing: noise character and digital filtering[C]. Sensors, IEEE, Canada, 2015: 1-4. doi: 10.1109/ICSENS.2015.7370466.
    张敏, 杨福喜, 张文来, 等. 磁通门磁力仪探头定向角度与准确度标定分析[J]. 地震地磁观测与研究, 2015, 36(6): 102-108. doi: 10.3969/j.issn.1003-3246.2015.05.017.
    ZHANG Min, YANG Fuxi, ZHANG Wenlai, et al. Preliminary analysis of directional angle and measurement accuracy on the fluxgate magnetometer probe[J]. Seismological and Geomagnetic Observation and Research, 2015, 36(6): 102-108. doi: 10.3969/j.issn.1003-3246.2015. 05.017.
    ROBBES D. Highly sensitive magnetometers-a review[J]. Sensors and Actuators A-Physical, 2006, 129(1): 86-93. doi: 10.1016/j.sna 2005.11.023.
    潘威炎. 长波超长波极长波传播[M]. 成都:电子科技大学出版社, 2004: 40-101.
    PAN Weiyan. Long Wave Beyond Long Wave Extremely Long Wave Propagation[M]. Chengdu: Electric Science and Technology University Press, 2004: 40-101.
    MOON P and SPENCER D E. Field Theory Handbook[M]. Berlin: Springer-Verlag, 1961: 28-30.
    WANG Yuanxin, ZHAO Zhenwei, WU Zhensen, et al. Fast convergence algorithm for earthquake prediction using electromagnetic fields excited by SLF/ELF horizontal magnetic dipole and Schumann resonance[J]. Wireless Personal Communication, 2014, 77(2): 1039-1053. doi: 10.1007/sl1277-013-1553-6.
    WANG Yuanxin, JIN Ronghong, GENG Junping, et al. Exact SLF/ELF underground HED field strengths in earth-ionosphere cavity and Schumann resonance[J]. IEEE Transactions on Antennas and Propagation, 2011, 59(8): 3031-3039. doi: 10.1109/TAP.2011.2158952.
  • 加载中
计量
  • 文章访问数:  1071
  • HTML全文浏览量:  104
  • PDF下载量:  301
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-29
  • 修回日期:  2016-12-30
  • 刊出日期:  2017-05-19

目录

    /

    返回文章
    返回