高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多站ISAR空间目标姿态估计方法

周叶剑 张磊 王虹现 邢孟道 牛威

周叶剑, 张磊, 王虹现, 邢孟道, 牛威. 多站ISAR空间目标姿态估计方法[J]. 电子与信息学报, 2016, 38(12): 3182-3188. doi: 10.11999/JEIT160603
引用本文: 周叶剑, 张磊, 王虹现, 邢孟道, 牛威. 多站ISAR空间目标姿态估计方法[J]. 电子与信息学报, 2016, 38(12): 3182-3188. doi: 10.11999/JEIT160603
ZHOU Yejian, ZHANG Lei, WANG Hongxian, XING Mengdao, NIU Wei. Attitude Estimation for Space Satellite Targets with Multistatic ISAR Systems[J]. Journal of Electronics & Information Technology, 2016, 38(12): 3182-3188. doi: 10.11999/JEIT160603
Citation: ZHOU Yejian, ZHANG Lei, WANG Hongxian, XING Mengdao, NIU Wei. Attitude Estimation for Space Satellite Targets with Multistatic ISAR Systems[J]. Journal of Electronics & Information Technology, 2016, 38(12): 3182-3188. doi: 10.11999/JEIT160603

多站ISAR空间目标姿态估计方法

doi: 10.11999/JEIT160603
基金项目: 

国家自然科学基金(61301280, 61301293)

Attitude Estimation for Space Satellite Targets with Multistatic ISAR Systems

Funds: 

The National Natural Science Foundation of China (61301280, 61301293)

  • 摘要: 该文提出一种基于多站逆合成孔径雷达(ISAR)序列成像的空间目标姿态估计方法。方法提取各帧ISAR图像中目标的典型线性结构,结合目标轨道信息实现关键部件姿态估计。该文建立了较为稳健的空间目标ISAR几何结构分析流程,采用Radon变换对太阳能翼、平板天线等线性结构进行提取和关联,继而估计典型线性结构在距离-多普勒成像平面的姿态角变化,同时利用卫星轨道信息获得ISAR距离-多普勒投影矩阵进行线性结构的3维姿态解算,最终实现典型部件姿态的优化求解估计。仿真实验验证了所提算法可有效实现空间目标典型部件的姿态估计,同时利用多站ISAR观测数据可有效提升算法的估计精度。
  • LEFFERTS E J, MARKLEY F L, and SHUSTER M D. Kalman filtering for spacecraft attitude estimation[J]. Journal of Guidance, Control and Dynamics, 1982, 5(5): 417-429.
    徐少坤, 刘记红, 袁翔宇, 等. 基于 ISAR 图像的中段目标二维几何特征反演方法[J]. 电子与信息学报, 2015, 37(2): 339-345. doi: 10.11999/JEIT140338.
    XU Shaokun, LIU Jihong, YUAN Xiangyu, et al. Two dimensional geometric feature inversion method for midcourse target based on ISAR image[J]. Journal of Electronics Information Technology, 2015 37(2): 339-345. doi: 10.11999/JEIT140338.
    魏小峰, 耿则勋, 娄博, 等. 空间目标三维姿态估计[J]. 武汉大学学报, 2015, 40(1): 96-101. doi: 10.13203/j.whugis2013 0156.
    WEI Xiaofeng, GEN Zexu, LOU Bo, et al. A 3D pose estimation method for space object[J]. Geomatics and Information Science of Wuhan University, 2015, 40(1): 96-101. doi: 10.13203/j.whugis20130156.
    ZHONG W J, JI J S, LEI X, et al. The attitude estimation of three-axis stabilized satellites using hybrid particle swarm optimization combined with radar cross section precise prediction[J]. Institution of Mechanical Engineers, 2015, 8: 1-13. doi: 10.1177/0954410015596178.
    LEMMENS S, KRAG H, ROSEBROCK J, et al. Radar mappings for attitude analysis of objects in orbit[C]. Proceedings of the 6th European Conference on Space Debris, Darmstadt, Germany, 2013: 20-24.
    ZHU D Q and CHU C C. Characterization of irregularly shaped bodies[C]. International Society for Optics and Photonics, USA, 1995: 17-22. doi: 10.1117/12.211501.
    郭裕兰, 万建伟, 鲁敏, 等. 激光雷达目标三维姿态估计[J]. 光学精密工程, 2012 20(4): 843-850. doi: 10.3788/OPE. 20122004.0843.
    GUO Yulan, WAN Jianwei, LU Min, et al. Three dimensional orientation estimation for ladar target[J]. Optics and Precision Engineering, 2012 20(4): 843-850. doi: 10.3788/ OPE.20122004.0843.
    TOMASI C and KANADE T. Shape and motion from image streams: A factorization method[J]. Proceedings of the National Academy of Sciences of USA, 1993, 90(21): 9795- 9802. doi: 10.1007/BF00129684.
    ROSEBROCK J. Absolute attitude from monostatic Radar measurements of rotating objects[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3737-3744. doi: 10.1109/TGRS.2011.2159727.
    宁夏, 叶春茂, 杨健, 等. 空间目标雷达观测视角变化率及其应用[J]. 清华大学学报(自然科学版), 2013 53(11): 1558-1564. doi: 10. 16511/j.cnki.qhdxxb. 2013.11.008.
    NING Xia, YE Chunmao, YANG Jian, et al. Radar aspect angle rate-of-change with respect to space target and its application[J]. Journal of Tsinghua University (Science and Technology), 2013, 53(11): 1558-1564. doi: 10.16511/j.cnki. qhdxxb.2013.11.008.
    MAYHAN J T, BURROWS M L, CUOMO K M, et al. High resolution 3D Snapshot ISAR imaging and feature extraction[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(2): 630-642. doi: 10.1109/ 7.937474.
    保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2005: 231-241.
    BAO Zheng, XING Mengdao, and WANG Tong. Radar Imaging Technology[M]. Beijing: Publishing House of Electronics Industry, 2005: 231-241.
    ELHABIAN S Y, ELSAYED K M, and AHMED S H. Moving object detection in spatial domain using background removal techniques-state-of-art[J]. Recent Patents on Computer Science, 2008, 1(1): 32-54. doi: 10.2174/1874479610801010032.
    RAFAEL C G and RICHARD E W. Digital Image Processing [M]. Third Edition. Beijing: Publishing House of Electronics Industry, 2007: 432-435.
    刘艳莉, 桂志国. 基于形态学的可变权值匹配自适应图像增强算法[J].电子与信息学报, 2014, 36(6): 1285-1291. doi: 10.3724/SP.J.1146.2013.01082.
    LIU Yanli and GUI Zhiguo. Adaptive image enhancement algorithm with variable weighted matching based on morphology[J]. Journal of Electronics Information Technology, 2014, 36(6): 1285-1291. doi: 10.3724/SP.J.1146. 2013.01082.
    陈伯孝, 朱旭花, 张守宏. 运动平台上多基地雷达时间同步技术[J]. 系统工程与电子技术, 2005, 27(10): 1734-1737. doi: 10. 3321/j.issn:1001-506X.2005.10.020.
    CHEN Boxiao, ZHU Xuhua, and ZHANG Shouhong. Time synchronization technique of multi-station radar on moving flat[J]. Systems Engineering and Electronics, 2005, 27(10): 1734-1737. doi: 10.3321/j.issn:1001-506X.2005.10.020.
    刘赞, 陈西宏, 薛伦生, 等. 双基地雷达系统时间同步方案研究[J].火力与指挥控制, 2016, 41(1): 139-142. doi: 10.3969. j.issn.1002-0640.2016.01.034.
    LIU Zan, CHEN Xihong, XUE Lunsheng, et al. Research on schemes of the time synchronization for bistatic radar system[J]. Fire Control Command Control, 2016, 41(1): 139-142. doi: 10.3969/j.issn.1002-0640.2016.01.034.
  • 加载中
计量
  • 文章访问数:  1243
  • HTML全文浏览量:  167
  • PDF下载量:  360
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-06
  • 修回日期:  2016-11-28
  • 刊出日期:  2016-12-19

目录

    /

    返回文章
    返回