高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于平行嵌套阵互协方差的二维波达角联合估计算法

李建峰 蒋德富 沈明威

李建峰, 蒋德富, 沈明威. 基于平行嵌套阵互协方差的二维波达角联合估计算法[J]. 电子与信息学报, 2017, 39(3): 670-676. doi: 10.11999/JEIT160488
引用本文: 李建峰, 蒋德富, 沈明威. 基于平行嵌套阵互协方差的二维波达角联合估计算法[J]. 电子与信息学报, 2017, 39(3): 670-676. doi: 10.11999/JEIT160488
LI Jianfeng, JIANG Defu, SHEN Mingwei . Joint Two-dimensional Direction of Arrival Estimation Based on Cross Covariance Matrix of Parallel Nested Array[J]. Journal of Electronics & Information Technology, 2017, 39(3): 670-676. doi: 10.11999/JEIT160488
Citation: LI Jianfeng, JIANG Defu, SHEN Mingwei . Joint Two-dimensional Direction of Arrival Estimation Based on Cross Covariance Matrix of Parallel Nested Array[J]. Journal of Electronics & Information Technology, 2017, 39(3): 670-676. doi: 10.11999/JEIT160488

基于平行嵌套阵互协方差的二维波达角联合估计算法

doi: 10.11999/JEIT160488
基金项目: 

中央高校基本科研业务费专项资金(2015B12614),江苏高校优势学科建设工程

Joint Two-dimensional Direction of Arrival Estimation Based on Cross Covariance Matrix of Parallel Nested Array

Funds: 

The Fundamental Research Funds for the Central Universities (2015B12614), A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions

  • 摘要: 论文提出基于平行嵌套阵互协方差的2维(Two Dimensional, 2D)波达角(Direction Of Arrival, DOA)联合估计算法。算法基于两个互相平行的嵌套阵的互协方差生成较长虚拟阵列,同时将2维DOA估计问题降维为1维 DOA估计问题。在构造协方差矩阵时,利用方向矩阵范德蒙特性增加虚拟快拍数,保证了孔径的最小损失。最后算法基于酉旋转不变技术(Estimation of Signal Parameters via Rotational Invariance Technique, ESPRIT)和总体最小二乘(Total Least Squares, TLS)方法进一步降低噪声影响,并获得了自动配对的2维DOA估计。相比传统平行阵下的DOA估计算法,该算法拥有更好的DOA估计性能,能辨识更多的空间信源,对空间色噪声有更强的鲁棒性。仿真结果验证了算法的有效性。
  • GERSHMAN A B, RBSAMEN M, and PESAVENTO M. One-and two-dimensional direction-of-arrival estimation: An overview of search-free techniques [J]. Signal Processing, 2010, 90(5): 1338-1349. doi: 10.1016/j.sigpro.2009.12.008.
    CHEN H, ZHU W P, and SWAMY M N S. Real-valued ESPRIT for two-dimensional DOA estimation of noncircular signals for acoustic vector sensor array[C]. IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon, Portugal, 2015: 2153-2156. doi: 10.1109/ISCAS.2015. 7169106.
    蔡晶晶, 鲍丹, 李鹏, 等. 强约束优化降维MUSIC二维DOA估计[J]. 电子与信息学报, 2014, 36(5): 1113-1118. doi: 10. 3724/SP.J.1146.2013.01127.
    CAI Jingjing, BAO Dan, LI Peng, et al. Two-dimensional DOA estimation using reduced-dimensional MUSIC algorithm with strong-constraint optimization[J]. Journal of Electronics Information Technology, 2014, 36(5): 1113-1118. doi: 10.3724/SP.J.1146.2013.01127.
    张小飞, 张立岑, 孙华普, 等. 双平行线阵中基于Euler变换传播算子的二维DOA估计算法[J]. 南京航空航天大学学报, 2015, 47(3): 324-331. doi: 10.16356/j.1005-2615.2015.03.002.
    ZHANG Xiaofei, ZHANG Licen, SUN Huapu, et al. Two-dimensional DOA estimation algorithm for two parallel linear arrays via Eular transformation and propagator method[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2015, 47(3): 324-331. doi: 10.16356/j.1005-2615. 2015.03.002.
    GU J F, ZHU W P, and SWAMY M N S. Joint 2-D DOA estimation via sparse L-shaped array[J]. IEEE Transactions on Signal Processing, 2015, 63(5): 1171-1182. doi: 10.1109/ TSP.2015.2389762.
    ZHANG W, LIU W, WANG J, et al. Computationally efficient 2-D DOA estimation for uniform rectangular arrays [J]. Multidimensional Systems Signal Processing, 2014, 25(4): 847-857. doi: 10.1007/s11045-013-0267-y.
    YIN Q Y, NEWCOMB R W, and ZOU L H. Estimating 2-D angles of arrival via two parallel linear arrays[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing, Glasgow, UK, 1989: 2803-2806. doi: 10.1109/ ICASSP.1989.267051.
    XIA T, ZHENG Y, WAN Q, et al. Decoupled estimation of 2-D angles of arrival using two parallel uniform linear arrays [J]. IEEE Transactions on Antennas and Propagation, 2007, 55(9): 2627-2632. doi: 10.1109/TAP.2007.904143.
    LI J, ZHANG X, and CHEN H. Improved two-dimensional DOA estimation algorithm for two-parallel uniform linear arrays using propagator method[J]. Signal Processing, 2012, 92(12): 3032-3038. doi: 10.1016/j.sigpro.2012.06.010.
    CHEN H, HOU C, LIU W, et al. Efficient two-dimensional direction-of-arrival estimation for a mixture of circular and noncircular sources[J]. IEEE Sensors Journal, 2016, 16(8): 1-9. doi: 10.1109/JSEN.2016.2517128.
    YANG L, LIU S, LI D, et al. Fast 2D DOA estimation algorithm by an array manifold matching method with parallel linear arrays[J]. Sensors, 2016, 16(3): 274-289. doi: 10.3390/s16030274.
    崔琛, 梁浩, 余剑. 稀疏阵列MIMO雷达高精度收发角度联合估计[J]. 应用科学学报, 2015, 33(5): 527-540. doi: 10.3969/ j.issn.0255-8297.2015.05.007.
    CUI Chen, LIANG Hao, and YU Jian. Joint DOD and DOA estimation with high accuracy in bistatic MIMO radar using sparse array[J]. Journal of Applied Sicences, 2015, 33(5): 527-540. doi: 10.3969/j.issn.0255-8297.2015.05.007.
    MOFFET A. Minimum-redundancy linear arrays[J]. IEEE Transactions on Antennas and Propagation, 1968, 16(2): 172-175. doi: 10.1109/TAP.1968.1139138.
    HU N, YE Z, XU X, et al. DOA estimation for sparse array via sparse signal reconstruction[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(2): 760-773. doi: 10.1109/TAES.2013.6494379.
    VAIDYANATHAN P P and PAL P. Sparse sensing with co-prime samplers and arrays[J]. IEEE Transactions on Signal Processing, 2011, 59(2): 573-586. doi: 10.1109/TSP. 2010.2089682.
    PAL P and VAIDYANATHAN P P. Nested arrays: a novel approach to array processing with enhanced degrees of freedom[J]. IEEE Transactions on Signal Processing, 2010, 58(8): 4167-4181. doi: 10.1109/TSP.2010.2049264.
    杨杰, 廖桂生. 基于空域稀疏性的嵌套MIMO雷达DOA估计算法[J]. 电子与信息学报, 2014, 36(11): 2698-2704. doi: 10. 3724/SP.J.1146.2013.01900.
    YANG Jie and LIAO Guisheng. A spatial sparsity-based DOA estimation method in nested MIMO radar[J]. Journal of Electronics Information Technology, 2014, 36(11): 2698-2704. doi: 10.3724/SP.J.1146.2013.01900.
    WU N and LIANG Q. Underwater DOA estimation based on nested array[C]. IEEE Military Communications Conference, Tampa, FL, USA, 2015: 216-221. doi: 10.1109/ MILCOM. 2015.7357445.
    丁姗姗, 张永顺, 牛超, 等. 一种基于KhatriRao子空间的非均匀稀疏阵列[J]. 空军工程大学学报:自然科学版, 2015, 16(5): 78-82. doi: 10.3969/j.issn.1009-3516.2015.05.019.
    DING Shanshan, ZHANG Yongshun, NIU Chao, et al. A novel spare linear array geometry via Khatri_Rao subspace [J]. Journal of Air Force Engineering University(Natural Science Edition), 2015, 16(5): 78-82. doi: 10.3969/j.issn. 1009-3516.2015.05.019.
    陈建锋, 吴云韬, 张贤达. 色噪声环境下的快速DOA估计算法[J]. 西安电子科技大学学报:自然科学版, 2004, 30(2): 151-154. doi: 10.3969/j.issn.1001-2400.2003.02.003.
    CHEN Jianfeng, WU Yuntao, and ZHANG Xianda. A novel method for estimating DOA in the presnece of unknown colored noise fields[J]. Journal of Xidian University (Natural Science Edition), 2004, 30(2): 151-154. doi: 10.3969/j.issn. 1001-2400.2003.02.003.
    LI J and ZHANG X. Unitary subspace-based method for angle estimation in bistatic MIMO radar[J]. Circuits, Systems, and Signal Processing, 2014, 33(2): 501-513. doi: 10.1007/s00034-013-9653-9.
    STEINWANDT J, ROEMER F, and HAARDT M. ESPRIT-Type algorithms for a received mixture of circular and strictly non-circular signals[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing, South Brisbane, QLD, Australia, 2015: 2809-2813. doi: 10.1109/ICASSP.2015.7178483.
  • 加载中
计量
  • 文章访问数:  1457
  • HTML全文浏览量:  157
  • PDF下载量:  414
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-12
  • 修回日期:  2016-09-06
  • 刊出日期:  2017-03-19

目录

    /

    返回文章
    返回