高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于稀疏重构的共形阵列稳健自适应波束形成算法

陈沛 赵拥军 刘成城

陈沛, 赵拥军, 刘成城. 基于稀疏重构的共形阵列稳健自适应波束形成算法[J]. 电子与信息学报, 2017, 39(2): 301-308. doi: 10.11999/JEIT160436
引用本文: 陈沛, 赵拥军, 刘成城. 基于稀疏重构的共形阵列稳健自适应波束形成算法[J]. 电子与信息学报, 2017, 39(2): 301-308. doi: 10.11999/JEIT160436
CHEN Pei, ZHAO Yongjun, LIU Chengcheng. Robust Adaptive Beamforming Algorithm for Conformal Arrays Based on Sparse Reconstruction[J]. Journal of Electronics & Information Technology, 2017, 39(2): 301-308. doi: 10.11999/JEIT160436
Citation: CHEN Pei, ZHAO Yongjun, LIU Chengcheng. Robust Adaptive Beamforming Algorithm for Conformal Arrays Based on Sparse Reconstruction[J]. Journal of Electronics & Information Technology, 2017, 39(2): 301-308. doi: 10.11999/JEIT160436

基于稀疏重构的共形阵列稳健自适应波束形成算法

doi: 10.11999/JEIT160436
基金项目: 

国家自然科学基金(61401469)

Robust Adaptive Beamforming Algorithm for Conformal Arrays Based on Sparse Reconstruction

Funds: 

The National Natural Science Foundation of China (61401469)

  • 摘要: 针对共形阵列天线自适应波束形成中存在的通用性差、主瓣保形困难、计算复杂度高等问题,该文提出一种基于稀疏重构的稳健自适应波束形成算法。该算法通过引入渐进最小方差准则,实现了干扰加噪声协方差矩阵的稀疏重构,并得到期望方向上的导向矢量估计,进而求得波束形成器的最优权矢量。该算法无需复杂的子阵分解或虚拟映射变换,适用于任意阵列形状。仿真实验验证了该算法不仅保证了期望的主瓣响应,同时对指向误差有较好的稳健性。与现有算法相比,该算法所需采样快拍数少,计算复杂度低,收敛速度快,在较大的输入信噪比范围内达到了较好的阵列输出性能。
  • JOSEFSSON L and PERSSON P. Conformal Array Antenna Theory and Design[M]. New York: John Wiley Sons, 2006: 1-2.
    SEMKIN V, FERRERO F, BISOGNIN A, et al. Beam switching conformal antenna array for mm-wave communications[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 28-31. doi: 10.1109/LAWP. 2015.2426510.
    YANG Hu, JIN Zusheng, MONTISCI G, et al. Design equations for cylindrically conformal arrays of longitudinal slots[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(1): 80-88. doi: 10.1109/TAP.2015.2496965.
    ORAIZI H and SOLEIMANI H. Optimum pattern synthesis of non-uniform spherical arrays using the Euler rotation[J]. IET Microwaves, Antennas and Propagation, 2015, 9(9): 898-904. doi: 10.1049/iet-map.2014.0460.
    HU Wanqiu, WANG Xuesong, LI Yongzhen, et al. Synthesis of conformal arrays with matched dual-polarized patterns[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 1341-1344. doi: 10.1109/LAWP.2015.2508438.
    DORSEY W M, COLEMAN J O, and PICKLES W R. Uniform circular array pattern synthesis using second-order cone programming[J]. IET Microwaves, Antennas and Propagation, 2015, 9(8): 723-727. doi: 10.1049/iet-map.2014. 0418.
    HUANG Zhijiang, ZHOU Jie, and ZHANG Haiping. Full polarimetric sum and difference patterns synthesis for conformal array[J]. Electronics Letters, 2015, 51(8): 602-604. doi: 10.1049/el.2014.4428.
    邹麟. 基于几何代数的共形阵列空域信号处理研究[D]. [博士论文], 电子科技大学, 2012: 54-60.
    ZOU Lin. Research on spatial signal processing of conformal array based on geometric algebra[D]. [Ph.D. dissertation], University of Electronic Science and Technology of China, 2012: 54-60.
    YANG Peng, YANG Feng, NIE Zaiping, et al. Robust adaptive beamformer using interpolation technique for conformal antenna array[J]. Progress in Electromagnetics Research B, 2010, 23: 215-228. doi: 10.2528/PIERB10061504.
    YANG Peng, YANG Feng, NIE Zaiping, et al. Robust beamformer using manifold separation technique for semispherical conformal array[J]. IEEE Antennas and Wireless Propagation Letters, 2011, 10(10): 1035-1038. doi: 10.1109/LAWP.2011.2168936.
    吕志丰,雷宏. 基于差值映射的压缩感知MUSIC算法[J]. 电子与信息学报, 2015, 37(8): 1874-1878. doi: 10.11999/ JEIT141542.
    L Zhifeng and LEI Hong. Compressive sensing MUSIC algorithm based on difference map[J]. Journal of Electronics Information Technology, 2015, 37(8): 1874-1878. doi: 10.11999/JEIT141542.
    WANG Jian, SHENG Weixing, HAN Yubing, et al. Adaptive beamforming with compressed sensing for sparse receiving array[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 823-833. doi: 10.1109/TAES.2014. 120532.
    GU Yujie and LESHEM A. Robust adaptive beamforming based on interference covariance matrix reconstruction and steering vector estimation[J]. IEEE Transactions on Signal Processing, 2012, 60(7): 3881-3885. doi: 10.1109/TSP.2012. 2194289.
    HUANG Lei, ZHANG Jing, XU Xu, et al. Robust adaptive beamforming with a novel interference-plus-noise covariance matrix reconstruction method[J]. IEEE Transactions on Signal Processing, 2015, 63(7): 1643-1650. doi: 10.1109/TSP. 2015.2396002.
    STOICA P and MOSES R. Spectral Analysis of Signals [M]. New Jersey: Prentice Hall, 2005: 273-281.
    ABEIDA H, ZHANG Qilin, LI Jian, et al. Iterative sparse asymptotic minimum variance based approaches for array processing[J]. IEEE Transactions on Signal Processing, 2013, 61(4): 933-944. doi: 10.1109/TSP.2012.2231676.
    DELMAS J P. Asymptotically minimum variance second- order estimation for noncircular signals with application to DOA estimation[J]. IEEE Transactions on Signal Processing, 2004, 52(5): 1235-1241. doi: 10.1109/TSP.2006.873505.
    STOICA P, BABU P, and LI J. SPICE: A sparse covariance-based estimation method for array processing[J].
    IEEE Transactions on Signal Processing, 2011, 59(2): 629-638. doi: 10.1109/TSP.2010.2090525.
    RASEKH M and SEYDNEJAD S R. Design of an adaptive wideband beamforming algorithm for conformal arrays[J]. IEEE Communications Letters, 2014, 18(11): 1955-1958. doi: 10.1109/LCOMM.2014.2357417.
    ELNASHAR A, ELNOUBI S M, and EL-MIKATI H A. Further study on robust adaptive beamforming with optimum diagonal loading[J]. IEEE Transactions on Antennas and Propagation, 2006, 54(12): 3647-3658. doi: 10.1109/TAP.2006.886473.
  • 加载中
计量
  • 文章访问数:  1334
  • HTML全文浏览量:  192
  • PDF下载量:  441
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-29
  • 修回日期:  2016-11-10
  • 刊出日期:  2017-02-19

目录

    /

    返回文章
    返回