高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有限链环上一类常循环码的距离

袁健 朱士信 开晓山

袁健, 朱士信, 开晓山. 有限链环上一类常循环码的距离[J]. 电子与信息学报, 2017, 39(3): 754-757. doi: 10.11999/JEIT160392
引用本文: 袁健, 朱士信, 开晓山. 有限链环上一类常循环码的距离[J]. 电子与信息学报, 2017, 39(3): 754-757. doi: 10.11999/JEIT160392
YUAN Jian, ZHU Shixin, KAI Xiaoshan. On Distances of Family of Constacyclic Codes over Finite Chain Rings[J]. Journal of Electronics & Information Technology, 2017, 39(3): 754-757. doi: 10.11999/JEIT160392
Citation: YUAN Jian, ZHU Shixin, KAI Xiaoshan. On Distances of Family of Constacyclic Codes over Finite Chain Rings[J]. Journal of Electronics & Information Technology, 2017, 39(3): 754-757. doi: 10.11999/JEIT160392

有限链环上一类常循环码的距离

doi: 10.11999/JEIT160392
基金项目: 

国家自然科学基金(61370089, 60973125),东南大学国家移动通信研究实验室开放研究基金(2014D04),安徽省自然科学基金(1508085SQA198)

On Distances of Family of Constacyclic Codes over Finite Chain Rings

Funds: 

The National Natural Science Foundation of China (61370089, 60973125), The Open Research Fund of National Mobile Communications Research Laboratory, Southeast University (2014D04), The Natural Science Foundation of Anhui Province (1508085SQA198)

  • 摘要: 在编码理论中,线性码的(最小)距离是一个极其重要的参数,它决定了码的纠错能力。设R为任一有限交换链环, a为其最大理想的一个生成元, R*为R的乘法单位群。对于任意wR*,该文利用R上任意长度的(1+aw)-常循环码的生成结构,通过计算这类码的高阶挠码,得到了R上任意长度的(1+aw)-常循环码的汉明距离,并研究了这类常循环码的齐次距离。这给编译有限链环上此类常循环码提供了重要的理论依据。
  • HAMMONS A R Jr., KUMAR P V, CALDERBANK A R, et al. TheZ4-linearity of Kerdock, Preparata, Goethals and related codes[J]. IEEE Transactions on Information Theory, 1994, 40(2): 301-319. doi: 10.1109/18.312154.
    施敏加, 杨善林, 朱士信. 环F2+uF2++uk-1F2上长度为2s的(1+u)-常循环码的距离分布[J]. 电子与信息学报, 2010, 32(1): 112-116. doi: 10.3724/SP.J.1146.2008.01810.
    SHI M J, YANG S L, and ZHU S X. The distributions of distances of (1+u)-constacyclic codes of length2s overF2+uF2++uk-1F2[J]. Journal of Electronics Information Technology, 2010, 32(1): 112-116. doi: 10.3724/ SP.J.1146.2008.01810.
    KONG B, ZHENG X Y, and MA H J. The depth spectrums of constacyclic codes over finite chain rings[J]. Discrete Mathematics, 2015, 338(2): 256-261. doi: 10.1016/j.disc.2014. 09.013.
    QIAN K Y, ZHU S X, and KAI X S. On cyclic self-orthogonal codes over Z2m[J]. Finite Fields and Their Applications, 2015, 33: 53-65. doi: 10.1016/j.ffa.2014.11.005.
    DINH H Q, DHOMPONGSA S, and SRIBOONCHITTA S. Repeated-root constacyclic codes of prime power length overFpm[u]/ua and their duals[J]. Discrete Mathematics, 2016, 339(6): 1706-1715. doi: 10.1016/j.disc.2016.01.020.
    WOLFMANN J. Negacyclic and cyclic codes over Z4[J]. IEEE Transactions on Information Theory, 1999, 45(7): 2527-2532. doi: 10.1109/18.796397.
    NORTON G H andSǎLǎGAN A. On the structure of linear and cyclic codes over a finite chain ring[J]. Applicable Algebra in Engineering, Communication and Computing, 2000, 10(6): 489-506. doi: 10.1007/PL00012382.
    NORTON G H and SǎLǎGAN A. On the Hamming distance of linear codes over a finite chain ring[J]. IEEE Transactions on Information Theory, 2000, 46(3): 1060-1067. doi: 10.1109/18.841186.
    GREFERATH M and SCHMIDT S E. Gray isometries for finite chain rings and a nonlinear ternary (36,312,15)code[J]. IEEE Transactions on Information Theory, 1999, 45(7): 2522-2524. doi: 10.1109/18.796395.
    CAO Y L. On constacyclic codes over finite chain rings[J]. Finite Fields and Their Applications, 2013, 24: 124-135. doi: 10.1016/j.ffa.2013.07.001.
    MCDONALD B R. Finite Rings with Identity[M]. New York, Marcel Dekker Press, 1974: 56-97.
    DINH H Q. Constacyclic codes of lengthps over Fpm+uFpm[J]. Journal of Algebra, 2010, 324(5): 940-950. doi: 10.1016/j.jalgebra.2010.05.027.
  • 加载中
计量
  • 文章访问数:  1008
  • HTML全文浏览量:  124
  • PDF下载量:  419
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-22
  • 修回日期:  2016-09-23
  • 刊出日期:  2017-03-19

目录

    /

    返回文章
    返回