高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多伯努利概率假设密度的扩展目标跟踪方法

李文娟 顾红 苏卫民

李文娟, 顾红, 苏卫民. 基于多伯努利概率假设密度的扩展目标跟踪方法[J]. 电子与信息学报, 2016, 38(12): 3114-3121. doi: 10.11999/JEIT160372
引用本文: 李文娟, 顾红, 苏卫民. 基于多伯努利概率假设密度的扩展目标跟踪方法[J]. 电子与信息学报, 2016, 38(12): 3114-3121. doi: 10.11999/JEIT160372
LI Wenjuan, GU Hong, SU Weimin. Extended Target Tracking Method Based on Multi-BernoulliProbability Hypothesis Density[J]. Journal of Electronics & Information Technology, 2016, 38(12): 3114-3121. doi: 10.11999/JEIT160372
Citation: LI Wenjuan, GU Hong, SU Weimin. Extended Target Tracking Method Based on Multi-BernoulliProbability Hypothesis Density[J]. Journal of Electronics & Information Technology, 2016, 38(12): 3114-3121. doi: 10.11999/JEIT160372

基于多伯努利概率假设密度的扩展目标跟踪方法

doi: 10.11999/JEIT160372
基金项目: 

国家自然科学基金(61471198)

Extended Target Tracking Method Based on Multi-BernoulliProbability Hypothesis Density

Funds: 

The National Natural Science Foundation of China (61471198)

  • 摘要: 高分辨率雷达系统中,扩展目标一般会产生多个量测。现有随机有限集(RFS) 类算法一般假定扩展目标的量测数目服从泊松分布,然而这个假设与实际情况不符。针对这一问题,该文提出一种多伯努利扩展目标概率假设密度(MB-ET-PHD)跟踪算法。该算法首先假设扩展目标的量测数目服从多伯努利分布,然后通过有限集统计(FISST)理论的多目标微积分推导得到校正等式,最后给出了高斯混合(GM)框架的仿真结果。仿真结果表明该算法能够获得比泊松ET-PHD算法更好的跟踪性能。
  • GILHOLM K and SALMOND D. Spatial distribution model for tracking extended objects[J]. IET Radar, Sonar Navigation, 2005, 152(5): 364-371. doi: 10.1049/ip-rsn: 20045114.
    MAHLER R. PHD filters for nonstandard targets I: extended targets[C]. International Conference on Information Fusion, Seattle, WA, USA, 2009: 915-921.
    MAHLER R. Statistical Multisource-Multitarget Information Fusion[M]. Artech House, Norwood, MA, 2007: 193-360.
    MAHLER R. Multi target Bayes filtering via first-order multi target moments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1152-1178. doi: 10.1109/ TAES.2003.1261119.
    VO B, SINGH S, and DOUCENT A. Sequential Monte Carlo methods for multi-target filtering with random finite sets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4): 1224-1245. doi: 10.1109/TAES.2005.1561884.
    胡子军, 张林让, 张鹏, 等. 基于高斯混合带势概率假设密度滤波器的位置杂波下多机动目标跟踪算法[J]. 电子与信息学报, 2015, 37(1): 116-122. doi: 10.11999/JEIT140218.
    HU Zijun, ZHANG Linrang, ZHANG Peng, et al. Gaussian mixture cardinalized probability hypothesis density filter for multiple maneuvering target tracking under unknown clutter situation[J]. Journal of Electronics Information Technology, 2015, 37(1): 116-122. doi: 10.11999/JEIT140218.
    吴卫华, 江晶, 冯讯, 等. 基于高斯混合势化概率假设密度的脉冲多普勒雷达多目标跟踪算法[J].电子与信息学报, 2015, 37(6): 1490-1494. doi: 10.11999/JEIT141232.
    WU Weihua, JIANG Jing, FENG Xun, et al. Multi-target tracking algorithm based on Gaussian mixture cardinalized probability hypothesis density for pulse Doppler radar[J]. Journal of Electronics Information Technology, 2015, 37(6): 1490-1494. doi: 10.11999/JEIT141232.
    VO B and MA W. The Gaussian mixture probability hypothesis density filter[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4091-4104. doi: 10.1109/TSP.2006. 881190.
    GRANSTROM K, LUNDQUIST C, and ORGUNER U. Extended target tracking using a Gaussian mixture PHD filter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4): 3268-3286. doi: 10.1109/TAES.2012. 6324703.
    GRANSTROM K, LUNDQUIST C, and ORGUNER U. A Gaussian mixture PHD filter for extended target tracking[C]. International Conference on Information Fusion, Edinburgh, Scotland, UK, 2010: 1-8. doi: 10.1109/ICIF.2010.5711885.
    LAN Jian and LI Xiaorong. Tracking of maneuvering non-ellopsoidal extended ojectct or target group using random matrix[J]. IEEE Transactions on Signal Processing, 2014, 62(9): 1042-1059. doi: 10.1109/TSP.2014.2309561.
    FELDMANN M, FRANKEN D, and KOCH W. Tracking of extended objects and group targets using random matrices[J]. IEEE Transactions on Signal Processing, 2011, 59(4): 1409-1420. doi: 10.1109/TSP.2010.2101064.
    GRANSTROM K and ORGUNER U. A PHD filter for tracking multiple extended targets using random matrices[J]. IEEE Transactions on Signal Processing, 2012, 60(11): 5657-5671. doi: 10.1109/TSP.2012.2212888.
    GENNARELLI G, VIVONE G, BRACA P, et al. Multiple extended target tracking for through-wall radars[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(12): 6482-6494. doi: 10.1109/TGRS.2015.2441957.
    WAHLSTROM N and OZKAN E. Extended target tracking using Gaussian processes[J]. IEEE Transactions on Signal Processing, 2015, 63(16): 4165-4178. doi: 10.1109/TSP. 2015.2424194.
    GRANSTROM K, NATALE A, BRACA P, et al. Gamma Gaussian inverse Wishart probability hypothesis density for extended target tracking using X-band marine radar data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(12): 6617-6631. doi: 10.1109/TGRS.2015.2444794.
    BEARD M, REUTER S, GILHOLM K, et al. Multiple extended target tracking with labeled random finite sets[J]. IEEE Transactions on Signal Processing, 2016, 64(7): 1638-1653. doi: 10.1109/TSP.2015.2505683.
    MA Dongdong, LIAN Feng, and LIU Jing. Sequential Monte Carlo implementation of cardinality balanced multi-target multi-Bernoulli filter for extended target tracking[J]. IET Radar, Sonar Navigation, 2016, 10(2): 272-277. doi: 10.1049/iet-rsn.2015.0081.
  • 加载中
计量
  • 文章访问数:  1353
  • HTML全文浏览量:  117
  • PDF下载量:  331
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-18
  • 修回日期:  2016-08-25
  • 刊出日期:  2016-12-19

目录

    /

    返回文章
    返回