高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于深度置信网络和双谱对角切片的低截获概率雷达信号识别

王星 周一鹏 周东青 陈忠辉 田元荣

王星, 周一鹏, 周东青, 陈忠辉, 田元荣. 基于深度置信网络和双谱对角切片的低截获概率雷达信号识别[J]. 电子与信息学报, 2016, 38(11): 2972-2976. doi: 10.11999/JEIT160031
引用本文: 王星, 周一鹏, 周东青, 陈忠辉, 田元荣. 基于深度置信网络和双谱对角切片的低截获概率雷达信号识别[J]. 电子与信息学报, 2016, 38(11): 2972-2976. doi: 10.11999/JEIT160031
WANG Xing, ZHOU Yipeng, ZHOU Dongqing, CHEN Zhonghui, TIAN Yuanrong. Research on Low Probability of Intercept Radar Signal Recognition Using Deep Belief Network and Bispectra Diagonal Slice[J]. Journal of Electronics & Information Technology, 2016, 38(11): 2972-2976. doi: 10.11999/JEIT160031
Citation: WANG Xing, ZHOU Yipeng, ZHOU Dongqing, CHEN Zhonghui, TIAN Yuanrong. Research on Low Probability of Intercept Radar Signal Recognition Using Deep Belief Network and Bispectra Diagonal Slice[J]. Journal of Electronics & Information Technology, 2016, 38(11): 2972-2976. doi: 10.11999/JEIT160031

基于深度置信网络和双谱对角切片的低截获概率雷达信号识别

doi: 10.11999/JEIT160031
基金项目: 

国家自然科学基金(61372167),航空科学基金(20152096019)

Research on Low Probability of Intercept Radar Signal Recognition Using Deep Belief Network and Bispectra Diagonal Slice

Funds: 

The National Natural Science Foundation of China (61372167), The Aeronautical Science Foundation of China (20152096019)

  • 摘要: 基于深度置信网络(DBN)对信号双谱对角切片(BDS)结构特征进行学习,实现低截获概率(LPI)雷达信号识别。该方法首先建立基于受限玻尔兹曼机(RBM)的DBN模型,对LPI雷达信号的BDS数据进行逐层无监督贪心学习,然后运用后向传播(BP)机制在有监督学习方式下根据学习误差对DBN模型参数进行微调,最后基于该BDS-DBN模型实现未知信号的分类和识别。理论分析和仿真结果表明,信噪比高于8 dB时,基于BDS和DBN的识别方法对调频连续波(FMCW), Frank, Costas, FSK/PSK 4类LPI信号的综合识别率保持在93.4%以上,高于传统的主成分分析加支持向量机法(PCA-SVM)和主成分分析加线性判别分析法(PCA-LDA)。
  • PHILLIP E P. Detecting and Classing Low Probability of Intercept Radar (Second Edition)[M]. Norwood, MA, USA, Artech House, 2009: 1-15.
    LIU Y J, XIAO P, WU H C, et al. LPI radar signal detection based on radial integration of Choi-Williams time-frequency image[J]. Journal of Systems Engineering and Electronics, 2015, 26(5): 973-981. doi: 10.1109/JSEE.2015.00106.
    李娜, 王珂, 李保珠. 低截获概率雷达信号检测方法的优化及应用[J]. 光学精密工程, 2014, 22(11): 3122-3128. doi: 10. 3788/OPE. 20142211.3122.
    LI Na, WANG Ke, and LI Baozhu. Optimization and application of LPI radar signal detection method[J]. Optics and Precision Engineering, 2014, 22(11): 3122-3128. doi: 10.3788/OPE. 20142211.3122.
    蔡忠伟, 李建东. 基于双谱的通信辐射源个体识别[J]. 通信学报, 2006, 28(2): 75-79. doi: 10.3321/j.issn:1000-436x.2007.02. 012.
    CAI Zhongwei and LI Jiandong. Study of transmitter individual identification based on bispectra[J]. Journal on Communications, 2006, 28(2): 75-79. doi: 10.3321/j.issn: 1000-436x.2007.02.012.
    王世强, 张登福, 毕笃彦, 等. 双谱二次特征在雷达信号识别中的应用[J]. 西安电子科技大学学报(自然科学版), 2012, 39(2): 127-132. doi: 10.3969/j.issn.1001-2400.2012.02.021.
    WANG Shiqiang, ZHANG Dengfu, BI Duyan, et al. Research on recognizing the radar signal using the bispectrum cascade feature[J]. Journal of Xidian University, 2012, 39(2): 127-132. doi: 10.3969/j.issn.1001-2400.2012.02.021.
    徐书华, 黄本雄, 徐丽娜. 基于SIB/PCA的通信辐射源个体识别[J]. 华中科技大学学报(自然科学版), 2008, 36(7): 14-17. doi: 10.3321/j.issn:1671-4512.2008.07.004.
    XU Shuhua, HUANG Benxiong, and XU Lina. Identification of individual radio transmitters using SIB/PCA[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2008, 36(7): 14-17. doi: 10.3321/j.issn:1671- 4512.2008.07.004.
    胡振, 傅昆, 张长水. 基于深度学习的作曲家分类问题[J] . 计算机研究与发展, 2014, 51(9): 1945-1954. doi: 10.7544/issn. 1000-1239.2014.20140189.
    HU Zhen, FU Kun, and ZHANG Changshui. Audio classical composer identification by deep neural network[J]. Journal of Computer Research and Development, 2014, 51(9): 1945-1954. doi: 10.7544/issn.1000-1239.2014.20140189.
    SCHMIDHUBER J. Deep learning in neural networks: An overview[J]. Neural Networks, 2014, 61: 85-117. doi: 10.1016/ j.neunet.2014.09.003.
    尹宝才, 王文通, 王立春. 深度学习研究综述[J]. 北京工业大学学报, 2015, 41(1): 48-59. doi: 10.11936/bjutxb2014100026.
    YIN Baocai, WANG Wentong, and WANG Lichun. Review of deep learning[J]. Journal of Beijing University of Technology, 2015, 41(1): 48-59. doi: 10.11936/bjutxb2014100026.
    HINTON G E, OSINDERO S, and TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554.doi: 10.1162/neco.2006.18.7.1527.
    SARIKAYA R, HINTON G E, and DEORAS A. Application of deep belief networks for natural language understanding[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2014, 22(4): 778-784. doi: 10.1109/TASLP. 2014.2303296.
    HINTON G, LI D, DONG Y, et al. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups[J]. IEEE Signal Processing Magazine, 2012, 29(6): 82-97. doi: 10.1109/MSP.2012.2205597.
    TABOADA and FERNANDO L. Detection and classification of low probability of intercept radar signals using parallel filter arrays and higher order statistics[D]. [Ph.D. dissertation], Naval Postgraduate School, 2002.
    张旭. 基于信号分析的无线设备指纹特征提取[D]. [硕士论文], 北京邮电大学, 2014: 13-14.
    ZHANG Xu. Wireless devices fingerprint feature extraction based on signal analysis[D]. [Master dissertation], Beijing University of Posts and Telecommunications, 2014: 13-14.
  • 加载中
计量
  • 文章访问数:  2109
  • HTML全文浏览量:  328
  • PDF下载量:  685
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-16
  • 修回日期:  2016-07-14
  • 刊出日期:  2016-11-19

目录

    /

    返回文章
    返回