高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分层认知无线电网络中基于稳定匹配的资源分配算法

曹龙 赵杭生 鲍丽娜 张建照

曹龙, 赵杭生, 鲍丽娜, 张建照. 分层认知无线电网络中基于稳定匹配的资源分配算法[J]. 电子与信息学报, 2016, 38(10): 2605-2611. doi: 10.11999/JEIT151460
引用本文: 曹龙, 赵杭生, 鲍丽娜, 张建照. 分层认知无线电网络中基于稳定匹配的资源分配算法[J]. 电子与信息学报, 2016, 38(10): 2605-2611. doi: 10.11999/JEIT151460
CAO Long, ZHAO Hangsheng, BAO Lina, ZHANG Jianzhao. Resource Allocation Algorithm Based on Stable Matching in Hierarchical Cognitive Radio Networks[J]. Journal of Electronics & Information Technology, 2016, 38(10): 2605-2611. doi: 10.11999/JEIT151460
Citation: CAO Long, ZHAO Hangsheng, BAO Lina, ZHANG Jianzhao. Resource Allocation Algorithm Based on Stable Matching in Hierarchical Cognitive Radio Networks[J]. Journal of Electronics & Information Technology, 2016, 38(10): 2605-2611. doi: 10.11999/JEIT151460

分层认知无线电网络中基于稳定匹配的资源分配算法

doi: 10.11999/JEIT151460
基金项目: 

国家自然科学基金(61471395, 61471392, 61301161),江苏省自然科学基金(BK20141070)

Resource Allocation Algorithm Based on Stable Matching in Hierarchical Cognitive Radio Networks

Funds: 

The National Natural Science Foundation of China (61471395, 61471392, 61301161), The Natural Science Foundation of Jiangsu Province (BK20141070)

  • 摘要: 频谱资源的合理分配是认知无线电技术追求的目标之一,随着认知无线电网络中的次用户(SUs)数量不断增加,频谱资源的精确、实时分配与管控越来越难以实现。针对此问题,该文提出一种分层的认知无线电网络(CRN)架构,多个管理实体专注于为各层用户提供频谱服务;并在该架构下,提出一种基于稳定匹配的资源分配算法,用户通过自主协商形成分配结果,不仅保证了主用户(PUs)对次用户的功率限制,还充分考虑了各自的效用。仿真结果表明,所提算法的性能接近于最优方案,并降低了计算复杂度和系统时延。
  • OSSEIRAN A, BRAUN V, HIDEKAZU T, et al. The foundation of the mobile and wireless communications system for 2020 and beyond: challenges, enablers and technology solutions[C]. IEEE Vehicular Technology Conference, Dresden, 2013: 1-5. doi: 10.1109/VTCSpring.2013.6692781.
    AHMAD A, AHMAD S, REHMANI M H, et al. A survey on radio resource allocation in cognitive radio sensor networks[J]. IEEE Communications Surveys Tutorials, 2015, 17(2): 888-917. doi: 10.1109/COMST.2015.2401597.
    VASSAKI S, POULAKIS M I, and PANAGOPOULOS A D. Spectrum leasing in cognitive radio networks: a matching theory approach[C]. IEEE Vehicular Technology Conference, Glasgow, 2015: 1-5. doi: 10.1109/VTCSpring.2015.7146101.
    MITOLA J, GUERCI J, REED J, et al. Accelerating 5G QoE via public-private spectrum sharing[J]. IEEE Communications Magazine, 2014, 52(5): 77-85. doi: 10.1109/ MCOM.2014.6815896.
    MUSAVIAN L and AISSA S. Capacity and power allocation for spectrum sharing communications in fading channels[J]. IEEE Transactions Wireless Communications, 2009, 8(1): 148-156. doi: 10.1109/TWC.2009.070265.
    ASGHARI V and AISSA S. Adaptive rate and power transmission in spectrum-sharing systems[J]. IEEE Transactions Wireless Communications, 2010, 9(10): 3272-3280. doi: 10119/TWC.2010.090210.100291.
    ZHOU X, LI G Y, LI D, et al. Probabilistic resource allocation for opportunistic spectrum access[J]. IEEE Transactions Wireless Communications, 2010, 9(9): 2870-2879. doi: 10119/ TWC.2010.070610.091511.
    潘甦, 曹跑跑, 刘胜美. 一种多无线电系统中基于公平性和精细化带宽分配的资源分配算法[J]. 电子与信息学报, 2015, 37(2): 399-404. doi: 10.11999/ JEIT140339.
    PAN S, CAO P, and LIU S. A resource allocation algorithm based on proportional fairness and refined bandwidth allocation for multi-radio systems[J]. Journal of Electronics Information Technology, 2015, 37(2): 399-404. doi: 10.11999/ JEIT140339.
    XU Y, ANPALAGAN A, WU Q, et al. Decision-theoretic distributed channel selection for opportunistic spectrum access: strategies, challenges and solutions[J]. IEEE Communications Surveys Tutorials, 2013, 15(4): 1689-1713. doi: 10.1109/ SURV.2013.030713.00189.
    IEEE 1900.5-2011. Standard for policy language requirements and system architectures for dynamic spectrum access (DSA) systems [S]. 2011.
    Al-Ali A K, SUN Y, FELICE M D, et al. Accessing spectrum databases using interference alignment in vehicular cognitive radio networks[J]. IEEE Transactions on Vehicular Technology, 2015, 64(1): 263-272. doi: 10.1109/TVT.2014. 2318837.
    CHEN X and HUANG J. Database-assisted distributed spectrum sharing[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(11): 2349-2361. doi: 10.1109/ JSAC.2013.131110.
    GOLDSMITH A, JAFAR S A, MARIC I, et al. Breaking spectrum gridlock with cognitive radios: an information theoretic perspective[J]. Proceedings of the IEEE, 2009, 97(5): 894-914. doi: 10.1109/JPROC.2009.2015717.
    PAPADIMITRIOU C H and STEIGLITZ K. Combinatorial Optimization: Algorithms and Complexity[M]. New York, USA, Dover Press, 1998: 248-255.
    GUSFIELD D and IRVING R W. The Stable Marriage Problem: Structure and Algorithms[M]. Cambridge, MA, USA, MIT Press, 1989: 1-8.
    GALE D and SHAPLEY L S. College admissions and the stability of marriage[J]. The American Mathematical Monthly, 1962, 69(1): 9-15. doi: 10.2307/2312726.
    GU Y, SAAD W, BENNIS M, et al. Matching theory for future wireless networks: fundamentals and applications[J]. IEEE Communications Magazine, 2015, 53(5): 52-59. doi: 10.1109/ MCOM.2015.7105641.
    JORSWIECK E. Stable matchings for resource allocation in wireless networks[C]. International Conference on Digital Signal Processing (DSP), Corfu, 2011: 1-8. doi: 10.1109/ ICDSP.2011.6004983.
    NAEEM M, ANPALAGAN A, JASEEMUDDIN M, et al. Resource allocation techniques in cooperative cognitive radio networks[J]. IEEE Communications Surveys Tutorials, 2014, 16(2): 729-744. doi: 10.1109/SURV.102313.00272.
    MANLOVE D F. Algorithmics of Matching Under Preferences[M]. Singapore, World Scientific Press, 2013: 1-47.
  • 加载中
计量
  • 文章访问数:  1370
  • HTML全文浏览量:  168
  • PDF下载量:  445
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-24
  • 修回日期:  2016-05-26
  • 刊出日期:  2016-10-19

目录

    /

    返回文章
    返回