高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于稀疏贝叶斯学习的低空测角算法

张永顺 葛启超 丁姗姗 郭艺夺

张永顺, 葛启超, 丁姗姗, 郭艺夺. 基于稀疏贝叶斯学习的低空测角算法[J]. 电子与信息学报, 2016, 38(9): 2309-2313. doi: 10.11999/JEIT151319
引用本文: 张永顺, 葛启超, 丁姗姗, 郭艺夺. 基于稀疏贝叶斯学习的低空测角算法[J]. 电子与信息学报, 2016, 38(9): 2309-2313. doi: 10.11999/JEIT151319
ZHANG Yongshun, GE Qichao, DING Shanshan, GUO Yiduo. Low-angle Estimation Method via Sparse Bayesian Learning[J]. Journal of Electronics & Information Technology, 2016, 38(9): 2309-2313. doi: 10.11999/JEIT151319
Citation: ZHANG Yongshun, GE Qichao, DING Shanshan, GUO Yiduo. Low-angle Estimation Method via Sparse Bayesian Learning[J]. Journal of Electronics & Information Technology, 2016, 38(9): 2309-2313. doi: 10.11999/JEIT151319

基于稀疏贝叶斯学习的低空测角算法

doi: 10.11999/JEIT151319
基金项目: 

国家自然科学基金(61372033, 61501501)

Low-angle Estimation Method via Sparse Bayesian Learning

Funds: 

The National Natural Science Fouudation of China (61372033, 61501501)

  • 摘要: 为解决米波雷达低空测角的精度问题,该文结合稀疏贝叶斯学习方法,利用相邻快拍稀疏结构的相似性,将多观测向量模型通过Kronecker积变换成具有块稀疏结构的单观测向量模型,同时通过矩阵变换解决了贝叶斯准则在复数域中的应用。通过稀疏贝叶斯学习的不断迭代恢复出了信号在感知矩阵下的系数矩阵,得到了信源的角度信息。仿真实验验证了该方法相对于广义MUSIC和M-FOCUSS算法具有更好的性能,并且分析了快拍数变化对算法性能的影响。
  • 王圆园, 刘铮, 曹运合. 基于压缩感知的米波雷达低空测角算法[J]. 系统工程与电子技术, 2014, 36(4): 667-671. doi: 10.3669/j.issn.1001-506X.2014.04.10.
    WANG Yuanyuan, LIU Zheng, and CAO Yunhe. Low angle estimation method based on compressed sensing for meter-wave radar[J]. Systems Engineering and Electronics, 2014, 36(4): 667-671. doi: 10.3669/j. issn.1001-506X.2014. 04.10.
    张文俊, 赵永波, 张守宏. 广义MUSIC算法在米波雷达测高中的应用及其改进[J]. 电子与信息学报, 2007, 29(2): 387-390.
    ZHANG Wenjun, ZHAO Yongbo, and ZHANG Shouhong. Altitude measurement of meter-wave radar using the general MUSIC algorithm and its improvement[J]. Journal of Electronics Information Technology, 2007, 29(2): 387-390.
    WAN Liangtian, HAN Guangjie, RODRIGUES J, et al. An energy efficient DOA estimation algorithm for uncorrelated and coherent signals in virtual MIMO systems[J]. Telecommunication Systems, 2015, 59(1): 93-110. doi: 10.1007/ s11235-014-9886-3.
    CHEN Baixiao, ZHAO Guanghui, and ZHANG Shouhong. Altitude measurement based on beam split and frequency diversity in VHF radar[J]. IEEE Transactions on Aerospace Electronic Systems, 2010, 46(1): 3-13.
    单泽涛, 单泽彪, 朱兰香, 等. SQP优化的最大似然波达方向角估计[J]. 吉林大学学报(信息科学版), 2015, 33(4): 356-360.
    SHAN Zetao, SHAN Zebiao, ZHU Lanxiang, et al.. Application of SQP optimization to maximum likelihood DOA estimation[J]. Journal of Jilin University (Information Science Edition), 2015, 33(4): 356-360.
    DONOHO D. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. doi: 10.1109/ TIT.2006.871582.
    MODEL D and ZIBULEVSKY M. Signal reconstruction in sensor arrays using sparse representation[J]. Signal Processing, 2006, 86(3): 624-638. doi: 10.1016/j.sigpro.2005. 05.033.
    TROPP J A and GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4665. doi: 10.1109/TIT.2007.909108.
    XIE Kan, HE Zhaoshui, and CICHOCHI A. Covergence analysis FOCUSS algorithm[J]. IEEE Transactions on Neural Network Learning Systems, 2015, 26(3): 601-613. doi: 10.1109/TNN LS.2014.2323985.
    JI Shihao, XUE Ya, and CARIN L. Bayesian compressive sensing[J]. IEEE Transactions on Signal Processing, 2008, 56(6): 2346-2356. doi: 10.1109/TSP.2007.914345.
    HO K. C, TAN K. C, and NEHORAI A. Estimating directions of arrival of completely and incompletely polarized signals with electromagnetic vector sensors[J]. IEEE Transactions on Signal Processing, 1999, 47(10): 2845-2852.
    WIPF D P and RAO B D. An empirical Bayesian strategy for solving the simultaneous sparse approximation problem[J]. IEEE Transactions on Signal Processing, 2007, 55(7): 3704-3716. doi: 10.1109/TSP.2007.894265.
    CARLIN M, ROCCA P, OLIVERI G, et al. Directions- of-arrival estimation through Bayesian compressive sensing strategies[J]. IEEE Transactions on Antennas Propagation, 2013, 61(7): 3828-3838. doi: 10.1109/TAP.2013.2256093.
    ZHANG Zhilin and RAO B D. Sparse signal recovery with temporally correlated source vectors using sparse Bayesian learning[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(5): 912-926. doi: 10.1109/JSTSP.2011. 2159773.
    文方青, 张弓, 贲德. 基于块稀疏贝叶斯学习的多任务压缩感知重构算法[J]. 物理学报, 2015, 64(7): 070201(1-7). doi: 10.7498/aps.64.070201.
    WEN Fangqing, ZHANG Gong, and BEN De. A recovery algorithm for multitask compressive sensing based on block sparse Bayesian learning[J]. Acta Physica Sinica, 2015, 64(7): 070201(1-7). doi: 10.7498/aps.64.070201.
    孙磊, 王华力, 许广杰, 等. 基于稀疏贝叶斯学习的高效DOA估计方法[J]. 电子与信息学报, 2013, 35(5): 1196-1201. doi: 10.3724/SP.J.1146.2012.01429.
    SUN Lei, WANG Huali, XU Guangjie, et al. Efficient direction-of-arrival estimation via sparse Bayesian learning[J]. Journal of Electronics Information Technology, 2013, 35(5): 1196-1201. doi: 10.3724/SP.J.1146.2012.01429.
    位寅生, 谭久彬, 郭荣. MUSIC空间谱估计并行运算算法[J].系统工程与电子技术, 2012, 34(1): 12-16. doi: 10.3969/j.issn. 1001-506X.2012.01.03.
    WEI Yinsheng, TAN Jiubin, and GUO Rong. Parallel computing algorithm for MUSIC spatial spectrum estimation[J]. Systems Engineering and Electronics, 2012, 34(1): 12-16. doi: 10.3969/j.issn.1001-506X.2012.01.03.
    张小飞, 汪飞, 陈伟华. 阵列信号处理的理论和应用[M]. 北京: 国防工业出版社, 2013: 80-82.
    ZHANG Xiaofei, WANG Fei, and CHEN Weihua. The Theory and Application of Array Signal Processing[M]. Beijing: National Defense Industry Press, 2013: 80-82.
    葛启超, 张永顺, 丁姗姗. 用于二维角度估计的新型阵列结构及性能分析[J]. 空军工程大学学报(自然科学版), 2016, 17(1): 60-65.
    GE Qichao, ZHANG Yongshun, and DING Shanshan. Novel array structure and performance analysis for 2D angle estimation[J]. Journal of Air Force Engineering University (Natural Science Edition), 2016, 17(1): 60-65.
  • 加载中
计量
  • 文章访问数:  1413
  • HTML全文浏览量:  117
  • PDF下载量:  342
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-25
  • 修回日期:  2016-04-18
  • 刊出日期:  2016-09-19

目录

    /

    返回文章
    返回