高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于区域协方差的视频显著度局部空时优化模型

田畅 姜青竹 吴泽民 刘涛 胡磊

田畅, 姜青竹, 吴泽民, 刘涛, 胡磊. 基于区域协方差的视频显著度局部空时优化模型[J]. 电子与信息学报, 2016, 38(7): 1586-1593. doi: 10.11999/JEIT151122
引用本文: 田畅, 姜青竹, 吴泽民, 刘涛, 胡磊. 基于区域协方差的视频显著度局部空时优化模型[J]. 电子与信息学报, 2016, 38(7): 1586-1593. doi: 10.11999/JEIT151122
TIAN Chang, JIANG Qingzhu, WU Zemin, LIU Tao, HU Lei. A Local Spatiotemporal Optimization Framework for Video Saliency Detection Using Region Covariance[J]. Journal of Electronics & Information Technology, 2016, 38(7): 1586-1593. doi: 10.11999/JEIT151122
Citation: TIAN Chang, JIANG Qingzhu, WU Zemin, LIU Tao, HU Lei. A Local Spatiotemporal Optimization Framework for Video Saliency Detection Using Region Covariance[J]. Journal of Electronics & Information Technology, 2016, 38(7): 1586-1593. doi: 10.11999/JEIT151122

基于区域协方差的视频显著度局部空时优化模型

doi: 10.11999/JEIT151122
基金项目: 

国家自然科学基金青年基金(61501509)

A Local Spatiotemporal Optimization Framework for Video Saliency Detection Using Region Covariance

Funds: 

The National Natural Science Youth Foundation of China (61501509)

  • 摘要: 显著度检测在计算机视觉中应用非常广泛,图像级的显著度检测研究已较为成熟,但视频显著度因其高度挑战性研究相对较少。该文借鉴图像级显著度算法的思想,提出一种通用的空时特征提取与优化模型来检测视频显著度。首先利用区域协方差矩阵构造视频的空时特征描述子,然后计算对比度得出初始显著图,最后通过联合前后帧的局部空时优化模型得到最终的显著图。在2个公开视频显著性数据集上的实验结果表明,所提算法性能优于目前的主流算法,同时具有良好的扩展性。
  • BORJI A, CHENG M, JIANG H, et al. Salient object detection: A benchmark[J]. IEEE Transactions on Image Processing, 2015, 24(12): 5706-5722. doi: 10.1109/ TIP.2015.2487833.
    ROTHER C, KOLMOGOROV V, and BLAKE A. Grabcut: Interactive foreground extraction using iterated graph cuts[J]. ACM Transactions on Graphics, 2004, 23(1): 309-314. doi: 10.1145/1186562.1015720.
    DING Y, XIAO J, and YU J. Importance filtering for image retargeting[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Colorado Springs, USA, 2011: 89-96. doi: 10.1109/CVPR.2011.5995445.
    MAHADEVAN V and VASOONCEIOS N. Saliency-based discriminant tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Miami, USA, 2009: 1007-1013. doi: 10.1109/CVPR.2009.5206573.
    SHARMA G, JURIE F, and SCHMID C. Discriminative spatial saliency for image classification[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Rhode Island, USA, 2012: 3506-3513. doi: 10.1109/ CVPR.2012.6248093.
    HADIZADEH H and BAJIC I. Saliency-aware video compression[J]. IEEE Transactions on Image Processing, 2014, 23(1): 19-33. doi: 10.1109/TIP.2013.2282897.
    CHENG M, ZHANG G, MIERA N, et al. Global contrast based salient region detection[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Colorado Springs, USA, 2011: 409-416. doi: 10.1109/ CVPR.2011.5995344.
    PERAZZI F, KRAHENBUHL P, PRITCH Y, et al. Saliency filters: Contrast based filtering for salient region detection[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Rhode Island, USA, 2012: 733-740. doi: 10.1109/CVPR.2012.6247743.
    YANG C, ZHANG L, LU H, et al. Saliency detection via graph-based manifold ranking[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Portland, USA, 2013: 3166-3173. doi: 10.1109/CVPR. 2013.407.
    ZHU W, LIANG S, WEI Y, et al. Saliency optimization from robust background detection[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, USA, 2014: 2814-2821. doi: 10.1109/ CVPR. 2014.360.
    QIN Y, LU H, XU Y, et al. Saliency detection via cellular automata[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, USA, 2015: 111-119. doi: 10.1109/CVPR.2015.7298606.
    蒋寓文, 谭乐怡, 王守觉. 选择性背景优先的显著性检测模型[J]. 电子与信息学报, 2015, 37(1): 130-136. doi: 10.11999/JEIT140119.
    JIANG Yuwen, TAN Leyi, and WANG Shoujue. Saliency detected model based on selective edges prior[J]. Journal of Electronics Information Technology, 2015, 37(1): 130-136. doi: 10.11999/JEIT140119.
    吕建勇, 唐振民. 一种基于图的流形排序的显著性目标检测改进方法[J]. 电子与信息学报, 2015, 37(11): 2555-2563. doi: 10.11999/JEIT150619.
    LV Jianyong and TANG Zhenmin. An improved graph-based manifold ranking for salient object detection[J]. Journal of Electronics Information Technology, 2015, 37(11): 2555-2563. doi: 10.11999/JEIT150619.
    MAHADEVAN V and VASCONCELOS N. Spatiotemporal saliency in dynamic scenes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(1): 171-177. doi: 10.1109/TPAMI.2009.112.
    ZHOU F, KANG S B, and COHEN M F. Time-mapping using space-time saliency[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, USA, 2014: 3358-3365. doi: 10.1109/CVPR.2014.429.
    HUANG C, CHANG Y, YANG Z, et al. Video saliency map detection by dominant camera motion removal[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2014, 24(8): 1336-1349. doi: 10.1109/TCSVT.2014.2308652.
    LIU Z, ZHANG X, LUO S, et al. Superpixel-based spatiotemporal saliency detection[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2014, 24(9): 1522-1540. doi: 10.1109/TCSVT.2014.2308642.
    WANG W, SHEN J, and SHAO L. Consistent video saliency using local gradient flow optimization and global refinement[J]. IEEE Transactions on Image Processing, 2015, 24(10): 1-12. doi: 10.1109/TIP.2015.2460013.
    MUTHUSWAMY K and RAJAN D. Particle filter framework for salient object detection in videos[J]. IET Computer Vision, 2015, 9(3): 428-438. doi: 10.1049/ iet-cvi.2013.0298.
    KIM H, KIM Y, SIM J, et al. Spatiotemporal saliency detection for video sequences based on random walk with restart[J]. IEEE Transactions on Image Processing, 2015, 24(8): 2552-2564. doi: 10.1109/TIP.2015.2425544.
    WANG W, SHEN J, and PORIKLI F. Saliency-aware geodesic video object segmentation[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, USA, 2015: 3395-3402. doi: 10.1109/CVPR.2015.7298961.
    KIM W and HAN J. Video saliency detection using contrast of spatiotemporal directional coherence[J]. IEEE Signal Processing Letters, 2014, 21(10): 1250-1254. doi: 10.1109/ LSP.2014.2332213.
    ERDEM E and ERDEM A. Visual saliency estimation by nonlinearly integrating features using region covariances[J]. Journal of Vision, 2013, 13(4): 1-20. doi: 10.1167/13.4.11.
    KOCAK A, CIZMECILERr K, ERDEM A, et al. Top down saliency estimation via superpixel-based discriminative dictionaries[C]. British Machine Vision Conference (BMVC), Nottingham, UK, 2014: 1-10. doi: 10.5244/C.28.73.
    CHANG K, LIU Y, CHEN H, et al. Fusing generic objectness and visual saliency for salient object detection[C]. IEEE Conference on Computer Vision (ICCV), Barcelona, Spain, 2011: 914-921. doi: 10.1109/ICCV.2011.6126333.
    LI J, TIAN Y, DUAN L, et al. Estimating visual saliency through single image optimization[J]. IEEE Signal Processing Letters, 2013, 20(9): 845-848. doi: 10.1109/LSP. 2013.2268868.
    TUAEL O, PORIKLI F, and MEER P. Region covariance: A fast descriptor for detection and classification[C]. European Conference on Computer Vision, Graz, Austria, 2006: 589-600. doi: 10.1007/11744047_45.
    ACHANTA R, SHAJI A, SMITH K, et al. Slic superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274-2281. doi: 10.1109/TPAMI.2012.120.
    BROX T and MALIK J. Large displacement optical flow: Descriptor matching in variational motion estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 33(3): 500-513. doi: 10.1109/TPAMI. 2010.143.
    HONG X, CHANG H, and SHAN S. Sigma set: A small second order statistical region descriptor[C]. IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009: 1802-1809. doi: 10.1109/CVPR. 2009.5206742.
    TSAI D, FLAGG M, and REHG J M. Motion coherent tracking with multilabel MRF optimization[C]. British Machine Vision Conference (BMVC), Aberystwyth, UK, 2010: 1-11. doi: 10.5244/C.24.56.
  • 加载中
计量
  • 文章访问数:  1404
  • HTML全文浏览量:  145
  • PDF下载量:  665
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-08
  • 修回日期:  2016-02-29
  • 刊出日期:  2016-07-19

目录

    /

    返回文章
    返回