CANDES E J, ROMBERG J, and TAO T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509. doi: 10.1109/TIT.2005.862083.
|
DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. doi: 10.1109 /TIT.2006.871582.
|
CANDES E J and TAO T. Decoding by linear programming [J]. IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215. doi: 10.1109/TIT.2005.858979.
|
BOURGAIN J, DILWORTH S, FORD K, et al. Explicit constructions of RIP matrices and related problems[J]. Duke Mathematical Journal, 2011, 159(1): 145-185. doi: 10.1215/ 00127094-1384809.
|
GAN H, LI Z, LI J, et al. Compressive sensing using chaotic sequence based on chebyshev map[J]. Nonlinear Dynamics, 2014, 78(4): 2429-2438. doi: 10.1007/s11071-014-1600-1.
|
CASTORENA J and CREUSERE C D. The restricted isometry property for banded random matrices[J]. IEEE Transactions on Signal Processing, 2014, 62(19): 5073-5084. doi: 10.1109/TSP.2014.2345350.
|
ZHANG J, HAN G, and FANG Y. Deterministic construction of compressed sensing matrices from protograph LDPC codes[J]. IEEE Signal Processing Letters, 2015, 22(11): 1960-1964. doi: 10.1109/LSP.2015.2447934.
|
党骙, 马林华, 田雨, 等. m序列压缩感知测量矩阵构造[J].西安电子科技大学学报, 2015, 42(2): 186-192. doi: 10.3969/ j.issn.1001-2400.2015.02.031.
|
DANG Kui, MA Linhua, TIAN Yu, et al. Construction of the compressive sensing measurement matrix based on m sequences[J]. Journal of Xidian University, 2015, 42(2): 186-192. doi: 10.3969/j.issn.1001-2400.2015.02.031.
|
夏树涛, 刘璐, 刘鑫吉. 基于Berlekamp-Justesen码的压缩感知确定性测量矩阵的构造[J]. 电子与信息学报, 2015, 37(4): 763-769. doi: 10.11999/JEIT140875.
|
XIA Shutao, LIU Lu, and LIU Xinji. Deterministic constructions of compressive sensing matrices based on berlekamp-justesen codes[J]. Journal of Electronics Information Technology, 2015, 37(4): 763-769. doi: 10. 11999/JEIT140875.
|
赵瑞珍, 王若乾, 张凤珍, 等. 分块的有序范德蒙矩阵作为压缩感知测量矩阵的研究[J]. 电子与信息学报, 2015, 37(6): 1317-1322. doi: 10.11999/JEIT140860.
|
ZHAO Ruizhen, WANG Ruoqian, ZHANG Fengzhen, et al. Research on the blocked ordered vandermonde matrix used as measurement matrix for compressed sensing[J]. Journal of Electronics Information Technology, 2015, 37(6): 1317-1322. doi: 10.11999/JEIT140860.
|
ZENG L, ZHANG X, CHEN L, et al. Deterministic construction of toeplitzed structurally chaotic matrix for compressed sensing[J]. Circuits, Systems, and Signal Processing, 2015, 34(3): 797-813. doi: 10.1007/s00034-014- 9873-7.
|
LI S and GE G. Deterministic sensing matrices arising from near orthogonal systems[J]. IEEE Transactions on Information Theory, 2014, 60(4): 2291-2302. doi: 10.1109/ TIT.2014.2303973.
|
MOHADES M M, MOHADES A, and TADAION A. A reed-solomon code based measurement matrix with small coherence[J]. IEEE Signal Processing Letters, 2014, 21(7): 839-843. doi: 10.1109/LSP.2014.2314281.
|
YU N Y and GONG G. A new binary sequence family with low correlation and large size[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1624-1636. doi: 10.1109/ TIT.2006.871062.
|
CHEN S S, DONOHO D L, and SAUNDERS M A. Atomic decomposition by basis pursuit[J]. SIAM Journal on Scientific Computing, 1998, 20(1): 33-61. doi: 10.1137/ S1064827596304010.
|
TROPP J. Greed is good: algorithmic results for sparse approximation[J]. IEEE Transactions on Information Theory, 2004, 50(10): 2231-2242. doi: 10.1109/TIT.2004.834793.
|
DONOHO D L and ELAD M. Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization[J]. Proceedings of the National Academy of Sciences of the Unifed States of America, 2003, 100(5): 2197-2202. doi: 10.1073/pnas. 0437847100.
|
HAUPT J, BAJWA W U, RAZ G, et al. Toeplitz compressed sensing matrices with applications to sparse channel estimation[J]. IEEE Transactions on Information Theory, 2010, 56(11): 5862-5875. doi: 10.1109/TIT.2010.2070191.
|