高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自然统计特征分布的无参考图像质量评价

陈勇 帅锋 樊强

陈勇, 帅锋, 樊强. 基于自然统计特征分布的无参考图像质量评价[J]. 电子与信息学报, 2016, 38(7): 1645-1653. doi: 10.11999/JEIT151058
引用本文: 陈勇, 帅锋, 樊强. 基于自然统计特征分布的无参考图像质量评价[J]. 电子与信息学报, 2016, 38(7): 1645-1653. doi: 10.11999/JEIT151058
CHEN Yong, SHUAI Feng, FAN Qiang. A No-reference Image Quality Assessment Based on Distribution Characteristics of Natural Statistics[J]. Journal of Electronics & Information Technology, 2016, 38(7): 1645-1653. doi: 10.11999/JEIT151058
Citation: CHEN Yong, SHUAI Feng, FAN Qiang. A No-reference Image Quality Assessment Based on Distribution Characteristics of Natural Statistics[J]. Journal of Electronics & Information Technology, 2016, 38(7): 1645-1653. doi: 10.11999/JEIT151058

基于自然统计特征分布的无参考图像质量评价

doi: 10.11999/JEIT151058
基金项目: 

国家自然科学基金(60975008),重庆市教委科学技术研究项目(KJ1400434)

A No-reference Image Quality Assessment Based on Distribution Characteristics of Natural Statistics

Funds: 

The National Natural Science Foundation of China (60975008), Science and Technology Research Project of Chongqing Education Committee (KJ1400434)

  • 摘要: 针对目前的无参考评价方法无法准确反映人类对图像质量的视觉感知效果,该文提出一种基于自然统计特征分布(DIstribution Characteristics of Natural, DICN)的无参考图像质量评价方法。其原理是用小波变换将图像分解为低频子带和高频子带部分,再将高频子带部分分成 的小块,提取每一子块的幅值和信息熵,并分别计算其分布直方图均值和斜度作为特征,利用支持向量回归思想对特征进行训练,建立5种不同失真类型的质量预测模型。在此基础上,采用支持向量机针对图像特征构造分类器并进行失真判断以确定不同失真的权重,结合5种失真评价模型可得到自然统计特征分布的无参考评价模型。实验结果分析表明,该算法的评价效果优于现有的经典算法,与主观评价具有较好一致性,能够准确反映人类对图像质量的视觉感知效果。
  • REDZUAN A M and LING Shao. Non-distortion-specific no-reference image quality assessment: a survey[J]. Information Sciences, 2015, 301(4): 141-160. doi: 10.1016/ j.ins.2014.12.055.
    贾惠珍, 孙权森, 王同罕. 结合感知特征和自然场景统计的无参考图像质量评价[J]. 中国图象图形学报, 2014, 19(6): 859-867. doi: 10.11834/jig.20140606.
    JIA Huizhen, SUN Quansen, and WANG Tonghan. Blind image quality assessment based on perceptual features and natural scene statistics[J]. Journal of Image and Graphics, 2014, 19(6): 859-867. doi: 10.11834/jig.20140606.
    MOORTHY A K and BOVIK A C. A two-step framework for constructing blind image quality indices[J]. IEEE Signal Processing Letters, 2010, 17(5): 513-516. doi: 10.1109/LSP. 2010.2043888.
    MOORTHY A K and BOVIK A C. Blind image quality assessment: From natural scene statistics to perceptual quality[J]. IEEE Transactions on Image Processing, 2011, 20(12): 3350-3364. doi: 10.1109/TIP.2011.2147325.
    HE L, TAO D, LI X, et al. Sparse representation for blind image quality assessment[C]. 25th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Rhode Island, 2012: 1146-1153. doi: 10.1109/CVPR.2012.6247795.
    金波, 李朝锋, 吴小俊. 结合NSS和小波变换的无参考图像质量评价[J]. 中国图象图形学报, 2012, 17(1): 33-39.
    JIN Bo, LI Chaofeng, and WU Xiaojun. No-reference image quality assessment based on natural scene statistics and wavelet[J]. Journal of Image and Graphics, 2012, 17(1): 33-39.
    SAAD M A, BOVIK A C, and CHARRIER C. DCT statistics model-based blind image quality assessment[C]. IEEE International Conference on Image Processing, Brussels, Belgium, 2011: 3093-3096. doi: 10.1109/ICIP.2011.6116319.
    MITTAL A, MOORTHY A K, and BOVIK A C. No-reference image quality assessment in the spatial domain [J]. IEEE Transactions on Image Processing, 2012, 21(12): 4695-4708. doi: 10.1109/TIP.2012.2214050.
    MITTAL A, SOUNDARARAN R, and BOVIK A C. Making a completely blind image quality analyzer[J]. IEEE Signal Processing Letters, 2013, 20(3): 209-212. doi: 10.1109/ LSP.2012.2227726.
    蒋刚毅, 黄大江, 王旭, 等. 图像质量评价方法研究进展[J]. 电子与信息学报, 2010, 32(1): 219-226. doi: 10.3724/SP.J. 1146.2009.00091.
    JIANG Gangyi, HUANG Dajiang, and WANG Xu, et al. Overview on image quality assessment methods[J]. Journal of Electronics Information Technology, 2010, 32(1): 219-226. doi: 10.3724/SP.J.1146.2009.00091.
    VAPNIK V N. An overview of statistical learning theory [J]. IEEE Transactions on Neural Networks, 1999, 10(5): 988-999. doi: 10.1109/72.788640.
    付晓薇, 代芸, 陈黎, 等. 基于局部熵的量子衍生医学超声图像去斑[J]. 电子与信息学报, 2015, 37(3): 560-566. doi: 10. 11999/JEIT140587.
    FU Xiaowei, DAI Yun, CHEN Li, et al. Quantum-inspired despeckling of medical ultrasound images based on local entropy[J]. Journal of Electronics Information Technology, 2015, 37(3): 560-566. doi: 10.11999/JEIT140587.
    LIU Lixiong, LIU Bao, HUANG Hua, et al. No-reference image quality assessment based on spatial and spectral entropies[J]. IEEE Transactions on Signal Processing: Image Communication, 2014, 29(8): 856-863. doi: 10.1016/j.image. 2014.06.006.
    SCHLKOPF B, SMOLA A J, WILLIAMSON R C, et al. New support vector algorithms[J]. Neural Computation, 2000, 12(5): 1207-1245. doi: 10.1162/089976600300015565.
    周晓剑. 考虑梯度信息的支持向量回归机[J]. 自动化学报, 2014, 40(12): 2908-2915. doi: 10.3724/SP.J.1004.2014.02908.
    ZHOU Xiaojian. Enhancingsupport vector regression with gradient information[J]. Acta Automatica Sinica, 2014, 40(12): 2908-2915. doi: 10.3724/SP.J.1004.2014.02908.
    张继红, 郑俊生. 多元再生核径向基函数研究[J]. 大连交通大学学报, 2015, 36(1): 109-117. doi: 10.13291/j.cnki.djdxac. 2015.01.029.
    ZHANG Jihong and ZHENG Junsheng. Study of multivariate reproducing kernel radial basis function[J]. Journal of Dalian Jiaotong University, 2015, 36(1): 109-117. doi: 10.13291/ j.cnki.djdxac.2015.01.029.
    SHEIKH H R and BOVIK A C. Image information and visual quality[J]. IEEE Transactions on Image Processing, 2006, 15(2): 430-444. doi: 10.1109/TIP.2005.859378.
    SHEIKH H R, BOVIK A C, and DE VECIANA G. An information fidelity criterion for image quality assessment using natural scene statistics[J]. IEEE Transactions on Image Processing, 2005, 14(12): 2117-2128. doi: 10.1109/TIP.2005. 859389.
  • 加载中
计量
  • 文章访问数:  1277
  • HTML全文浏览量:  92
  • PDF下载量:  626
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-14
  • 修回日期:  2016-01-20
  • 刊出日期:  2016-07-19

目录

    /

    返回文章
    返回