高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于贝叶斯压缩感知的复数稀疏信号恢复方法

王伟 唐伟民 王犇 雷舒杰

王伟, 唐伟民, 王犇, 雷舒杰. 基于贝叶斯压缩感知的复数稀疏信号恢复方法[J]. 电子与信息学报, 2016, 38(6): 1419-1423. doi: 10.11999/JEIT151056
引用本文: 王伟, 唐伟民, 王犇, 雷舒杰. 基于贝叶斯压缩感知的复数稀疏信号恢复方法[J]. 电子与信息学报, 2016, 38(6): 1419-1423. doi: 10.11999/JEIT151056
WANG Wei, TANG Weimin, WANG Ben, LEI Shujie . Sparse Signal Recovery Based on Complex Bayesian Compressive Sensing[J]. Journal of Electronics & Information Technology, 2016, 38(6): 1419-1423. doi: 10.11999/JEIT151056
Citation: WANG Wei, TANG Weimin, WANG Ben, LEI Shujie . Sparse Signal Recovery Based on Complex Bayesian Compressive Sensing[J]. Journal of Electronics & Information Technology, 2016, 38(6): 1419-1423. doi: 10.11999/JEIT151056

基于贝叶斯压缩感知的复数稀疏信号恢复方法

doi: 10.11999/JEIT151056
基金项目: 

国家自然科学基金(61571148),中国博士后科学基金(2014M550182),黑龙江省博士后特别资助(LBH-TZ0410),哈尔滨市科技创新人才资助课题(2013RFXXJ016),中国博士后特别资助(2015T80328)

Sparse Signal Recovery Based on Complex Bayesian Compressive Sensing

Funds: 

The National Natural Science Foundation of China (61571148), China Postdoctoral Science Foundation (2014M550182), Heilongjiang Province Postdoctoral Special Foundation (LBH-TZ0410), Harbin Science and Technology Innovation Talents (2013RFXXJ016), China Postdoctoral Special Funding (2015T 80328)

  • 摘要: 该文利用复数稀疏信号的时域相互关系提出一种新的稀疏贝叶斯算法(CTSBL)。该算法利用复数信号的实部与虚部分量具有相同的稀疏结构的特点,提升估计信号的稀疏程度。同时将多个测量信号间的内部结构信息引入到了信号恢复中,使原始的多测量稀疏信号恢复问题转变为单测量块稀疏信号恢复问题,使恢复性能得到了提升。理论分析和仿真结果证明,提出的CTSBL算法相较于目前的针对复数信号的多测量矢量贝叶斯压缩感知(CMTBCS)算法和块正交匹配追踪算法(BOMP)在估计精度上具有更好的性能。
  • DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. doi: 10.1109/ TIT.2006.871582.
    ELAD M. Sparse and Redundant Representations[M]. New York: Springer, 2010: 1094-1097.
    王天云, 于小飞, 陈卫东. 基于稀疏贝叶斯学习的无源雷达高分辨成像[J]. 电子与信息学报, 2015, 37(5): 1023-1030. doi: 10.11999/JEIT140899.
    WANG T Y, YU X F, and CHEN W D. High-resolution imaging of passive radar based on sparse Bayesian learning[J]. Journal of Electronics Information Technology, 2015, 37(5): 1023-1030. doi: 10.11999/JEIT140899.
    孙磊, 王华力, 许广杰. 基于稀疏贝叶斯学习的高效 DOA 估计方法[J]. 电子与信息学报, 2013, 35(5): 1196-1201. doi: 10.3724/SP.J.1146.2012.01429.
    SUN L, WANG H L, and XU G J. Efficient direction-of- arrival estimation via sparse Bayesian learning[J]. Journal of Electronics Information Technology, 2013, 35(5): 1196-1201. doi: 10.3724/SP.J.1146.2012.01429.
    CHEN S and DONOHO D L. Atomic decomposition by basis pursuit[J]. IEEE Transactions on Signal Processing, 1995, 43(1): 33-61. doi: 10.1137/S1064827596304010.
    THEIS F J, JUNG A, PUNTONET C G, et al. Signal recovery from partial information via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 15(2): 419-439.
    TIBSHIRANI R. Regression shrinkage and subset selection with the Lasso[J]. Journal of the Royal Statistical Society, 1996, 58(1): 267-288.
    HUANG J and ZHANG T. The benefit of group sparsity[J]. Annals of Statistics, 2009, 38(4): 1978-2004. doi: 10.1214/09- AOS778.
    YUAN M and LIN Y. Model selection and estimation in regression with grouped variables[J]. Journal of the Royal Statistical Society, 2006, 68(1): 49-67. doi: 10.1111/j. 1467-9868.2005.00532.x.
    FU Y L, LI H F, ZHANG Q H, et al. Block-sparse recovery via redundant block OMP[J]. Signal Processing, 2014, 97(7): 162-171. doi: 10.1016/j.sigpro.2013.10.030.
    LI B, SHEN Y, LI J, et al. Sensing and measurement dictionaries design for block OMP algorithm[J]. Electronics Letters, 2014, 50(19): 1351-1353. doi : 10.1049/el.2014. 2000.
    ZHANG Z and RAO B D. Sparse signal recovery with temporally correlated source vectors using sparse Bayesian learning[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(5): 912-926. doi: 10.1109/JSTSP.2011. 2159773.
    WANG W, JIA M, and GUO Q. A compressive sensing recovery algorithm based on sparse Bayesian learning for block sparse signal[C]. 2014 International Symposium on Wireless Personal Multimedia Communications, Sydney, 2014: 547-551. doi: 10.1109/WPMC.2014.7014878.
    王峰, 向新, 易克初, 等. 基于隐变量贝叶斯模型的稀疏信号恢复[J]. 电子与信息学报, 2015, 37(1): 97-102. doi: 10.11999/ JEIT140169.
    WANG F, XIANG X, YI K C et al. Sparse signals recovery based on latent variable Bayesian models[J]. Journal of Electronics Information Technology, 2015, 37(1): 97-102. doi: 10.11999/JEIT140169.
    CARLIN M, ROCCA P, OLIVERI G, et al. Directions-of- arrival estimation through Bayesian compressive sensing strategies[J]. IEEE Transactions on Antennas Propagation, 2013, 61(7): 3828-3838. doi : 10.1109/TAP.2013.2256093.
    WU Q, ZHANG Y D, AMIN M G, et al. Complex multitask Bayesian compressive sensing[C]. 2014 IEEE International Conference on Acoustics, Speech and Signal Processing, Florence, 2014: 3375-3379. doi: 10.1109/ICASSP.2014. 6854226.
    CAWLEY G C and TALBOT N L C. Preventing over-fitting during model selection via Bayesian regularisation of the hyper-parameters[J]. Journal of Machine Learning Research, 2007, 8(4): 841-861.
    ZHANG Z and RAO B D. Extension of SBL algorithms for the recovery of block sparse signals with Intra-Block correlation[J]. IEEE Transactions on Signal Processing, 2013, 61(8): 2009-2015. doi: 10.1109/TSP.2013.2241055.
    ZHANG Z and RAO B D. Recovery of block sparse signals using the framework of block sparse Bayesian learning[C]. 2012 IEEE International Conference on Acoustics, Speech and Signal Processing, Kyoto, Japan, 2012: 3345-3348. doi: 10.1109/ICASSP.2012.6288632.
    KAY S M. Fundamentals of statistical signal processing: estimation theory[J]. Technometrics, 1995, 37(4): 465-466.
  • 加载中
计量
  • 文章访问数:  2251
  • HTML全文浏览量:  171
  • PDF下载量:  768
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-17
  • 修回日期:  2016-03-18
  • 刊出日期:  2016-06-19

目录

    /

    返回文章
    返回