高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Logistic混沌映射性能分析与改进

陈志刚 梁涤青 邓小鸿 张颖

陈志刚, 梁涤青, 邓小鸿, 张颖. Logistic混沌映射性能分析与改进[J]. 电子与信息学报, 2016, 38(6): 1547-1551. doi: 10.11999/JEIT151039
引用本文: 陈志刚, 梁涤青, 邓小鸿, 张颖. Logistic混沌映射性能分析与改进[J]. 电子与信息学报, 2016, 38(6): 1547-1551. doi: 10.11999/JEIT151039
CHEN Zhigang, LIANG Diqing, DENG Xiaohong, ZHANG Ying. Performance Analysis and Improvement of Logistic Chaotic Mapping[J]. Journal of Electronics & Information Technology, 2016, 38(6): 1547-1551. doi: 10.11999/JEIT151039
Citation: CHEN Zhigang, LIANG Diqing, DENG Xiaohong, ZHANG Ying. Performance Analysis and Improvement of Logistic Chaotic Mapping[J]. Journal of Electronics & Information Technology, 2016, 38(6): 1547-1551. doi: 10.11999/JEIT151039

Logistic混沌映射性能分析与改进

doi: 10.11999/JEIT151039
基金项目: 

国家自然科学基金(61272494, 61350011),江西省教育厅科研项目(GJJ151522)

Performance Analysis and Improvement of Logistic Chaotic Mapping

Funds: 

The National Natural Science Foundation of China (612724494, 61350011), Educational Commission Science Foundation of Jiangxi Province of China (GJJ151522)

  • 摘要: 混沌系统是基于混沌的数据加密领域的一个重要研究对象,Logistic混沌映射是最简单和有效的混沌系统,被广泛应用在大多数混沌加密算法中,Logistic映射的安全性成为研究的热点。针对Logistic序列存在的吸引子与空白区问题,该文提出一种基于初始值和分形控制参数之间关系的Logistic映射改进方法。利用两者之间关系对映射自变量区间进行合理分段,扩大了混沌控制参数区域,将满射范围扩大到整个控制参数区间,使产生的序列分布更均匀,解决了稳定窗与空白区等问题。通过将改进Logistic与其它分段Logistic映射进行仿真对比,实验结果表明改进后的映射产生的序列混沌特性得到显著加强,分布更均匀,具有更好的随机性能测试指标。另外,改进Logistic映射计算复杂度低,实现简单,在扩频通信与混沌密码等领域有广阔的应用前景。
  • LEE Tianfu. Enhancing the security of password authenticated key agreement protocols based on chaotic maps[J]. Information Sciences, 2015, 290(1): 63-71. doi: 10.1016/j.ins.2014.08.041.
    TONG Xiaojun. Design of an image encryption scheme based on a multiple chaotic map[J]. Communications in Nonlinear Science and Numerical Simulation, 2013, 18(7): 1725-1733. doi: 10.1016/j.asoc.2015.08.008.
    刘泉, 李佩玥, 章明朝, 等. 基于可Markov分割混沌系统的图像加密算法[J]. 电子与信息学报, 2014, 36(6): 1271-1277. doi: 10.3724/SP.J.1146.2013.01246.
    LIU Quan, LI Peiyue, ZHANG Mingchao, et al. Image encryption algorithm based on chaos system having Markov portion[J]. Journal of Electronic Information Technology, 2014, 36(6): 1271-1277. doi: 10.3724/SP.J.1146.2013.01246.
    徐红梅, 郭树旭. 基于符号相对熵的Logistic混沌系统时间不可逆性分析[J]. 电子与信息学报, 2014, 36(5): 1242-1246. doi: 10.3724/SP.J.1146.2013.01262.
    XU Hongmei and GUO Shuxu. Time irreversibility analysis of logistic chaos system based on symbolic relative entropy[J]. Journal of Electronics Information Technology, 2014, 36(5): 1242-1246. doi: 10.3724/SP.J.1146.2013.01262.
    ZHENG Pan, MU ChunLai, HU Xuegang, et al. Boundedness of solutions in a chemotaxis system with nonlinear sensitivity and logistic source[J]. Journal of Mathematical Analysis and Applications, 2015, 424(1): 509-522. doi: 10.1016/ j.jmaa.2014.11.031.
    WANG Mingxin. The diffusive logistic equation with a free boundary and sign-changing coefficient[J]. Journal of Differential Equations, 2015, 258(4): 1252-1266. doi:10.1016/ j.jde.2014.10.022.
    王兴元, 王明军. 二维Logistic映射的混沌控制[J]. 物理学报, 2008, 57(2): 731-736.
    WANG Xingyuan and WANG Ming-jun. Chaotic control of the coupled Logistic map[J]. Acta Physica Sinica, 2008, 57(2): 731-736.
    王兴元, 骆超. 二维Logistic映射的动力学分析[J]. 软件学报, 2006, 17(4): 729739.
    WANG Xingyuan and LUO Chao. Dynamic analysis of the coupled logistic map[J]. Journal of Software, 2006, 17(4): 729-739.
    范九伦, 张雪锋. 分段Logistic混沌映射及其性能分析[J]. 电子学报, 2009, 37(4): 720-725.
    FAN Jiulun and ZHANG Xuefeng. Piecewise logistic chaotic map and its performance analysis[J]. Acta Electronica Sinica, 2009, 37(4): 720725.
    HUA Zhongyun, ZHOU Yicong, PUN Chiman, et al. 2D sine logistic modulation map for image encryption[J]. Information Sciences, 2015, 297(1): 80-94. doi: 10.1016/j.ins.2014.11.018.
    刘建东, 付秀丽. 基于耦合帐篷映射的时空混沌单向Hash函数构造[J]. 通信学报, 2007, 28(6): 30-38.
    LIU Jiandong and FU Xiuli. Spatiotemporal chaotic one-way hash function construction based on coupled tent maps[J]. Journal on Communications, 2007, 28(6): 30-38.
    刘金梅, 丘水生. 基于Lyapunov指数改善数字化混沌系统的有限精度效应[J]. 暨南大学学报(自然科学版), 2010, 31(5): 425-430.
    LIU Jinmei and QIU Shuisheng. Minimizing finite precision effects of digital chaotic systems by virtue of Lyapunov exponent[J]. Journal of Jinan University (Natural Science Edition), 2010, 31(5): 425-430.
    刘嘉辉, 张宏莉. 基于可扩展精度的Logistic混沌随机序列的并行计算方法[J]. 中国科学技术大学学报, 2011, 41(9): 837-846.
    LIU Jiahui and ZHANG Hongli. A parallel computing method of chaotic random sequence based on logistic map with scalable precision[J]. Journal of University of Science and Technology of China, 2011, 41(9): 837-846.
  • 加载中
计量
  • 文章访问数:  3145
  • HTML全文浏览量:  384
  • PDF下载量:  701
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-14
  • 修回日期:  2016-02-29
  • 刊出日期:  2016-06-19

目录

    /

    返回文章
    返回