高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于空域稀疏性的自适应频谱检测算法

于宏毅 程标 胡赟鹏 沈智翔

于宏毅, 程标, 胡赟鹏, 沈智翔. 基于空域稀疏性的自适应频谱检测算法[J]. 电子与信息学报, 2016, 38(7): 1703-1709. doi: 10.11999/JEIT151030
引用本文: 于宏毅, 程标, 胡赟鹏, 沈智翔. 基于空域稀疏性的自适应频谱检测算法[J]. 电子与信息学报, 2016, 38(7): 1703-1709. doi: 10.11999/JEIT151030
YU Hongyi, CHENG Biao, HU Yunpeng, SHEN Zhixiang. Adaptive Spectrum Detection Algorithm Based on Spatial Sparsity[J]. Journal of Electronics & Information Technology, 2016, 38(7): 1703-1709. doi: 10.11999/JEIT151030
Citation: YU Hongyi, CHENG Biao, HU Yunpeng, SHEN Zhixiang. Adaptive Spectrum Detection Algorithm Based on Spatial Sparsity[J]. Journal of Electronics & Information Technology, 2016, 38(7): 1703-1709. doi: 10.11999/JEIT151030

基于空域稀疏性的自适应频谱检测算法

doi: 10.11999/JEIT151030
基金项目: 

国家自然科学基金(61501517)

Adaptive Spectrum Detection Algorithm Based on Spatial Sparsity

Funds: 

The National Natural Science Foundation of China (61501517)

  • 摘要: 现有的频谱检测算法没有充分利用信号在角度维的稀疏性质。该文根据角度维的稀疏特性建立信号模型,通过稀疏贝叶斯学习(Sparse Bayesian Learning, SBL)算法解决稀疏信号的重构问题,并在迭代过程中引入二元假设检验思想,推导出一种自适应门限的选取策略,把传统的重构算法转化为一个针对不同来波方向的信号检测问题。该算法能够在恒虚警概率下对多信号进行全盲检测,同时实现信号来波方向的精确估计。实验结果证明,自适应判决方法能够有效地提高稀疏重构算法的重构精度,降低运算复杂度,参数估计精度和信号检测性能相比于现有算法得到明显的提升。
  • DIKMESE S, SOFOTASIOS P C, IHALAINEN T, et al. Efficient energy detection methods for spectrum sensing under non-flat spectral characteristics[J]. IEEE Journal on Selected Areas in Communications, 2015, 33(5): 755-770. doi: 10.1109/JSAC.2014.2361074.
    马彬, 方源, 谢显中. 一种主用户随机到达情况下改进的循环平稳特征检测算法[J]. 电子与信息学报, 2015, 37(7): 1531-1537. doi: 10.11999/JEIT141283.
    MA Bin, FANG Yuan, and XIE Xianzhong. Improved cyclostationary spectrum sensing scheme for primary users randomly arriving[J]. Journal of Electronics Information Technology, 2015, 37(7): 1531-1537. doi: 10.11999/JEIT 141283.
    ZHANG Xinzhi, CHAI Rong, and GAO Feifei. Matched filter based spectrum sensing and power level detection for cognitive radio network[C]. IEEE Global Conference on Signal and Information Processing. Atlanta, USA, 2014: 1267-1270.
    WILCOX D, TSAKALAKI E, KORTUN A, et al. On spatial domain cognitive radio using single-radio parasitic antenna arrays[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(3): 571-580. doi: 10.1109/JSAC. 2013.130321.
    赵晓晖, 李晓燕. 认知无线电中基于阵列天线和协方差矩阵的频谱感知算法[J]. 电子与信息学报, 2014, 36(7): 1693-1698. doi: 10.3724/SP.J.1146.2013.01057.
    ZHAO Xiaohui and LI Xiaoyan. Spectrum sensing algorithm in cognitive radio based on array antenna and covariance matrix[J]. Journal of Electronics Information Technology, 2014, 36(7): 1693-1698. doi: 10.3724/SP.J.1146.2013.01057.
    马启明, 王宣银, 杜栓平. 基于频谱幅度起伏特性的微弱信号检测方法研究[J]. 电子与信息学报, 2008, 30(11): 2642-2645.
    MA Qiming, WANG Xuanyin, and DU Shuanping. Research of the method for the weak signal detection based on the amplitude fluctuation property of the frequency spectrum[J]. Journal of Electronics Information Technology, 2008, 30(11): 2642-2645.
    刘畅, SYED S A, 张锐, 等. 基于空间谱的多天线盲频谱感知算法[J]. 通信学报, 2015, 36(4): 119-128. doi: 10.11959/j.issn. 1000-436x.2015087.
    LIU Chang, SYED S A, ZHANG Rui, et al. Spatial spectrum based blind spectrum sensing for multi-antenna cognitive radio system[J]. Journal on Communication, 2015, 36(4): 119-128. doi: 10.11959/j.issn.1000-436x.2015087.
    左加阔, 陶文凤, 包永强, 等. 多跳认知水声通信中的分布式稀疏频谱检测算法[J]. 电子与信息学报, 2013, 35(10): 2359-2364. doi: 10.3724/SP.J.1146.2013.00042.
    ZUO Jiakuo, TAO Wenfeng, BAO Yongqiang, et al. Distributed sparse spectrum detection in multihop cognitive underwater acoustict communication networks[J]. Journal of Electronics Information Technology, 2013, 35(10): 2359-2364. doi: 10.3724/SP.J.1146.2013.00042.
    HUANG Dinhwa, WU Sauhsuan, WU Wenrong, et al. Cooperative radio source positioning and power map reconstruction: a sparse bayesian learning approach[J]. IEEE Transactions on Vehicular Technology, 2015, 64(6): 2318-2332. doi: 10.1109/TVT.2014.2345738.
    LEI Chuan, ZHANG Jun, and GAO Qiang. Detection of unknown and arbitrary sparse signals against noise[J]. IET Signal Processing, 2014, 8(2): 146-157. doi: 10.1049/iet-spr. 2011.0125.
    WACHOWSKI N and AZIMI M R. Detection and classification of nonstationary transient signals using sparse approximations and bayesian networks[J]. IEEE/ACM Transactions on Audio Speech and Language Processing, 2014, 22(12): 1750-1764. doi: 10.1109/TASLP.2014.2348913.
    PARIS S, MARY D, and FERRARI A. Detection tests using sparse models, with application to hyperspectral data[J]. IEEE Transactions on Signal Processing, 2013, 61(6): 1481-1494. doi: 10.1109/TSP.2013.2238533.
    ZHOU Yifeng, YIP P C, and LEUNG H. Tracking the direction-of-arrival of multiple moving targets by passive arrays: algorithm[J]. IEEE Transactions on Signal Processing, 1999, 47(10): 2655-2666.
    WIPF D P and RAO B D. An empirical bayesian strategy for solving the simultaneous sparse approximation problem[J]. IEEE Transactions on Signal Processing, 2007, 55(7): 3704-3716. doi: 10.1109/TSP.2007.894265.
    WIPF D P, RAO B D, and NAGARAJAN S. Latent variable Bayesian models for promoting sparsity[J]. IEEE Transactions on Information Theory, 2011, 57(9): 6236-6255. doi: 10.1109/TIT.2011.2162174.
    KELLY E J and FORSYTHE K M. Adaptive detection and parameter estimation for multidimensional signal models[R]. Lexington: Lincoln Lab, 1989.
    TIPPING M E. Sparse bayesian learning and the relevance vector machine[J]. Journal of Machine Learning Research, 2001, 1(3): 211-244.
    刘寅, 吴顺君, 吴明宇, 等. 基于空域稀疏性的宽带DOA估计[J]. 航空学报, 2012, 33(11): 2028-2038.
    LIU Yin, WU Shunjun, WU Mingyu, et al. Wideband DOA estimation based on spatial sparseness[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(11): 2028-2038.
    LIU Zhangmeng, HUANG Zhitao, and ZHOU Yiyu. Direction-of-Arrival estimation of wideband signals via covariance matrix sparse representation[J]. IEEE Transactions on Signal Processing, 2011, 59(9): 4256-4270. doi: 10.1109/TSP.2011.2159214.
    KAY S M and GABRIEL J R. An invariance property of the generalized likelihood ratio test[J]. IEEE Signal Processing Letters, 2003, 10(12): 352-355. doi: 10.1109/LSP.2003. 818865.
  • 加载中
计量
  • 文章访问数:  1272
  • HTML全文浏览量:  141
  • PDF下载量:  545
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-10
  • 修回日期:  2016-01-22
  • 刊出日期:  2016-07-19

目录

    /

    返回文章
    返回