高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于图割和边缘行进的肝脏CT序列图像分割

廖苗 赵于前 曾业战 黄忠朝 邹北骥

廖苗, 赵于前, 曾业战, 黄忠朝, 邹北骥. 基于图割和边缘行进的肝脏CT序列图像分割[J]. 电子与信息学报, 2016, 38(6): 1552-1556. doi: 10.11999/JEIT151005
引用本文: 廖苗, 赵于前, 曾业战, 黄忠朝, 邹北骥. 基于图割和边缘行进的肝脏CT序列图像分割[J]. 电子与信息学报, 2016, 38(6): 1552-1556. doi: 10.11999/JEIT151005
LIAO Miao, ZHAO Yuqian, ZENG Yezhan, HUANG Zhongchao, ZOU Beiji. Liver Segmentation from Abdominal CT Volumes Based on Graph Cuts and Border Marching[J]. Journal of Electronics & Information Technology, 2016, 38(6): 1552-1556. doi: 10.11999/JEIT151005
Citation: LIAO Miao, ZHAO Yuqian, ZENG Yezhan, HUANG Zhongchao, ZOU Beiji. Liver Segmentation from Abdominal CT Volumes Based on Graph Cuts and Border Marching[J]. Journal of Electronics & Information Technology, 2016, 38(6): 1552-1556. doi: 10.11999/JEIT151005

基于图割和边缘行进的肝脏CT序列图像分割

doi: 10.11999/JEIT151005
基金项目: 

国家自然科学基金(61172184, 61379107, 61402539, 61174210),新世纪优秀人才支持计划(NCET-13-0603),高等学校博士学科点专项科研基金(20130162110016),湖南省科技基本建设项目(20131199),湖南省科技计划项目(2015RS4008),中南大学中央高校基本科研业务费专项资金(2014ZZTS053),湖南省研究生科研创新项目(CX2014B052)

Liver Segmentation from Abdominal CT Volumes Based on Graph Cuts and Border Marching

Funds: 

The National Natural Science Foundation of China (61172184, 61379107, 61402539, 61174210), Program for New Century Excellent Talents in University of Ministry of Education in China (NCET-13-0603), Specialized Research Fund for the Doctoral Program of Higher Education in China (20130162110016), Program for Hunan Province Science and Technology Basic Construction (Grant 20131199), Hunan Provincial Science and Technology Project of China (2015RS4008), Fundamental Research Funds for the Central Universities of Central South University (2014ZZTS053), Hunan Provincial Innovation Foundation for Postgraduate (CX2014B052)

  • 摘要: 提出一种新的基于图割和边缘行进的腹部CT序列图像肝脏分割方法。首先,针对输入序列的数据特征,建立肝脏亮度和外观模型,突出肝脏区域抑制非肝脏区域;然后,将肝脏亮度、外观模型以及相邻切片之间的位置信息有效融入图割能量函数,实现CT序列肝脏的自动初步分割;最后,针对血管欠分割问题,提出了一种基于边缘行进的结果优化方法。通过对XHCSU14和SLIVER07数据库提供的30个病人肝脏序列的分割实验,以及与其他多种肝脏分割方法的比较,表明该方法能完整有效地分割肝脏,准确性高,鲁棒性强。
  • SELVER M A, KOCAOGLU A, DEMIR G K, et al. Patient oriented and robust automatic liver segmentation for pre-evaluation of liver transplantation[J]. Computers in Biology and Medicine, 2008, 38(7): 765-784. doi: 10.1016/j. compbiomed.2008.04.006.
    LU X Q, WU J S, REN X Y, et al. The study and application of the improved region growing algorithm for liver segmentation[J]. Optik, 2014, 125(9): 2142-2147. doi: 10. 1016/j.ijleo.2013.10.049.
    张小强, 熊博莅, 匡纲要. 一种基于变化检测技术的SAR图像舰船目标鉴别方法[J]. 电子与信息学报, 2015, 37(1): 63-70. doi: 10.11999/JEIT140143.
    ZHANG Xiaoqiang, XIONG Boli, and KUANG Gangyao. A ship target discrimination method based on change detection in SAR imagery[J]. Journal of Electronics Information Technology, 2015, 37(1): 63-70. doi: 10.11999/JEIT140143.
    韩明, 刘教民, 孟军英, 等. 结合局部能量与改进的符号距离正则项的图像目标分割算法[J]. 电子与信息学报, 2015, 37(9): 2047-2054. doi: 10.11999/JEIT141473.
    HAN Ming, LIU Jiaomin, MENG Junying, et al. Local energy information combined with improved signed distance regularization term for image target segmentation algorithm[J]. Journal of Electronics Information Technology, 2015, 37(9): 2047-2054. doi: 10.11999/ JEIT141473.
    PENG J L, WANG Y, and KONG D X. Liver segmentation with constrained convex variational model[J]. Pattern Recognition Letters, 2014, 43(1): 81-88. doi: 10.1016/j.patrec. 2013.07.010.
    AFIFI A and NAKAGUCHI T. Liver segmentation approach using graph cuts and iteratively estimated shape and intensity constrains[C]. Medical Image Computing and Computer-Assisted Intervention, Nice, 2012, 7511: 395-403.
    CHEN X, UDUPA J K, BAGCI U, et al. Medical image segmentation by combining graph cuts and oriented active appearance models[J]. IEEE Transactions on Image Processing, 2012, 21(4): 2035-2046. doi: 10.1109/TIP.2012. 2186306.
    HEIMANN T, MEINZER H, and WOLF I. A statistical deformable model for the segmentation of liver CT volumes[C]. MICCAI Workshop 3-D Segmentation Clinic Grand Challenge, Brisbane, 2007: 161-166. doi: 10.1109/ IEMBS.2010.5626470.
    KAINMULLER D, LANGE T, and LAMECKER H. Shape constrained automatic segmentation of the liver based on a heuristic intensity model[C]. MICCAI Workshop 3-D Segmentation Clinic Grand Challenge, Brisbane, 2007: 109-116.
    LIAO Miao, ZHAO Yuqian, LI Xianghua, et al. Automatic segmentation for cell images based on bottleneck detection and ellipse fitting[J]. Neurocomputing, 2015, 173(3): 615-622. doi: 10.1016/j.neucom.2015.08.006.
    HEIMANN T, GINNEKEN B V, STYNER M A, et al. Comparison and evaluation of methods for liver segmentation from CT datasets[J]. IEEE Transactions on Medical Imaging, 2009, 28(8): 1251-1265. doi: 10.1109/TMI.2009.2013851.
  • 加载中
计量
  • 文章访问数:  1729
  • HTML全文浏览量:  109
  • PDF下载量:  1154
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-08
  • 修回日期:  2016-01-22
  • 刊出日期:  2016-06-19

目录

    /

    返回文章
    返回