高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于局部敏感核稀疏表示的视频跟踪

黄宏图 毕笃彦 高山 查宇飞 侯志强

黄宏图, 毕笃彦, 高山, 查宇飞, 侯志强. 基于局部敏感核稀疏表示的视频跟踪[J]. 电子与信息学报, 2016, 38(4): 993-999. doi: 10.11999/JEIT150785
引用本文: 黄宏图, 毕笃彦, 高山, 查宇飞, 侯志强. 基于局部敏感核稀疏表示的视频跟踪[J]. 电子与信息学报, 2016, 38(4): 993-999. doi: 10.11999/JEIT150785
HUANG Hongtu, BI Duyan, GAO Shan, ZHA Yufei, HOU Zhiqiang. Visual Tracking via Locality-sensitive Kernel Sparse Representation[J]. Journal of Electronics & Information Technology, 2016, 38(4): 993-999. doi: 10.11999/JEIT150785
Citation: HUANG Hongtu, BI Duyan, GAO Shan, ZHA Yufei, HOU Zhiqiang. Visual Tracking via Locality-sensitive Kernel Sparse Representation[J]. Journal of Electronics & Information Technology, 2016, 38(4): 993-999. doi: 10.11999/JEIT150785

基于局部敏感核稀疏表示的视频跟踪

doi: 10.11999/JEIT150785
基金项目: 

国家自然科学基金(61175029, 61379104, 61372167),国家自然科学基金青年科学基金(61203268, 61202339)

Visual Tracking via Locality-sensitive Kernel Sparse Representation

Funds: 

The National Natural Science Foundation of China (61175029, 61379104, 61372167), The Young Scientists Fund of the National Natural Science Foundation of China (61203268, 61202339)

  • 摘要: 为了解决l1范数约束下的稀疏表示判别信息不足的问题,该文提出基于局部敏感核稀疏表示的视频目标跟踪算法。为了提高目标的线性可分性,首先将候选目标的SIFT特征通过高斯核函数映射到高维核空间,然后在高维核空间中求解局部敏感约束下的核稀疏表示,将核稀疏表示经过多尺度最大值池化得到候选目标的表示,最后将候选目标的表示代入在线的SVMs,选择分类器得分最大的候选目标作为目标的跟踪位置。实验结果表明,由于利用了核稀疏表示下数据的局部性信息,使得算法的鲁棒性得到一定程度的提高。
  • WU Yi, LIM J, and YANG Minghsuan. Object tracking Benchmark[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(6): 1442-1456.
    WRIGHT J, MA Yi, MAIRAL J, et al. Sparse representation for computer vision and pattern recognition[J]. Proceedings of the IEEE, 2010, 98(6): 1031-1044.
    MEI X and LING H. Robust visual tracking using L1 minimization[C]. 2009 IEEE 12th International Conference on Computer Vision, Kyoto, 2009: 1436-1443.
    BAO Chenglong, WU Yi, LING Haibin, et al. Real time robust L1 tracker using accelerated proximal gradient approach[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 2012: 1830-1837.
    ZHONG Wei, LU Huchuan, and YANG Minghsuan. Robust object tracking via sparse collaborative appearance model[J]. IEEE Transactions on Image Processing, 2014, 23(5): 2356-2368.
    WANG N and YEUNG D Y. Learning a deep compact image representation for visual tracking[C]. Advances in Neural Information Processing Systems, Nevada, 2013: 809-817.
    GAO Jin, LING Haibin, HU Weiming, et al. Transfer Learning Based Visual Tracking with Gaussian Processes Regression[M]. Computer Vision-ECCV 2014, Zurich: Springer International Publishing, 2014: 188-203.
    王瑞, 杜林峰, 孙督, 等. 复杂场景下结合SIFT与核稀疏表示的交通目标分类识别[J]. 电子学报, 2014, 42(11): 2129-2134.
    WANG Rui, DU Linfeng, SUN Du, et al. Traffic object recognition in complex scenes based on SIFT and kernel sparse representation[J]. Acta Electronica Sinica, 2014, 42(11): 2129-2134.
    YU K, ZHANG T, and GONG Y. Nonlinear learning using local coordinate coding[C]. Advances in Neural Information Processing Systems. Vancouver, 2009: 2223-2231.
    LI Feifei, FERGUS R, and PERONA P. Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories[J]. Computer Vision and Image Understanding, 2007, 106(1): 59-70.
    WANG Qing, FENG Chen, YANG Jimei, et al. Transferring visual prior for online object tracking[J]. IEEE Transactions on Image Processing, 2012, 21(7): 3296-3305.
    LEE H, BATTLE A, RAINA R, et al. Efficient sparse coding algorithms[C]. Advances in Neural Information Processing Systems, Vancouver, 2006: 801-808.
    GAO Shenghua, TSANG I W, and CHIA Liangtien. Sparse representation with kernels[J]. IEEE Transactions on Image Processing, 2013, 22(2): 423-434.
    WANG Jinjun, YANG Jianchao, YU Kai, et al. Locality-constrained linear coding for image classification[C]. 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, CA, USA. 2010: 3360-3367.
    CHANG Chihchung and LIN Chihjen. LIBSVM: A library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3): 1-27.
    SMOLA A J and SCHOLKOPF B. A tutorial on support vector regression[J]. Statistics and Computing, 2004, 14(3): 199-222.
    ROSS M A, LIM Jongwoo, LIN Ruei-Sung, et al. Incremental learning for robust visual tracking[J]. International Journal of Computer Vision, 2008, 77(1/3): 125-141.
  • 加载中
计量
  • 文章访问数:  1291
  • HTML全文浏览量:  102
  • PDF下载量:  517
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-29
  • 修回日期:  2015-11-27
  • 刊出日期:  2016-04-19

目录

    /

    返回文章
    返回