高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于谱回归特征降维与后向传播神经网络的识别方法研究

邬战军 牛敏 许冰 牛燕雄 耿天琪 张帆 满达

邬战军, 牛敏, 许冰, 牛燕雄, 耿天琪, 张帆, 满达. 基于谱回归特征降维与后向传播神经网络的识别方法研究[J]. 电子与信息学报, 2016, 38(4): 978-984. doi: 10.11999/JEIT150781
引用本文: 邬战军, 牛敏, 许冰, 牛燕雄, 耿天琪, 张帆, 满达. 基于谱回归特征降维与后向传播神经网络的识别方法研究[J]. 电子与信息学报, 2016, 38(4): 978-984. doi: 10.11999/JEIT150781
WU Zhanjun, NIU Min, XU Bing, NIU Yanxiong, GENG Tianqi, ZHANG Fan, MAN Da . Research on Recognition Method Based on Spectral Regression and Back Propagation Neural Network[J]. Journal of Electronics & Information Technology, 2016, 38(4): 978-984. doi: 10.11999/JEIT150781
Citation: WU Zhanjun, NIU Min, XU Bing, NIU Yanxiong, GENG Tianqi, ZHANG Fan, MAN Da . Research on Recognition Method Based on Spectral Regression and Back Propagation Neural Network[J]. Journal of Electronics & Information Technology, 2016, 38(4): 978-984. doi: 10.11999/JEIT150781

基于谱回归特征降维与后向传播神经网络的识别方法研究

doi: 10.11999/JEIT150781

Research on Recognition Method Based on Spectral Regression and Back Propagation Neural Network

  • 摘要: 采用后向传播(BP)神经网络对空间目标进行识别时,高维的输入特征导致网络结构复杂,识别性能降低。针对上述难点,该文提出一种基于谱回归(SR)特征降维与BP神经网络的识别方法。该方法首先对空间目标进行HOG特征提取,然后将提取的高维HOG特征进行SR降维,最后把降维后的数据通过BP分类器进行训练识别。实验结果表明:该方法的降维和识别特性优于传统降维方法PCA, KPAC, LPP, KLPP等,能够兼顾实时性和准确性,提高了识别性能。
  • 乔俊飞, 李淼, 刘江. 一种神经网络快速修剪算法[J]. 电子学报, 2010, 38(4): 830-834.
    QIAO Junfei, LI Miao, and LIU Jiang. A fast pruning algorithm for neural network[J]. Acta Electronica Sinca, 2010, 38(4): 830-834.
    曾岳, 冯大政. 一种基于加权变形的2DPCA的人脸特征提取方法[J]. 电子与信息学报, 2011, 33(4): 769-774. doi: 10.3724/ SP.J.1146.2010.01003.
    ZENG Yue and FENG Dazheng. An algorithm of feature extraction of face based on the weighted variation of 2DPC[J]. Journal of Electronics Information Technology, 2011, 33(4): 769-774. doi: 10.3724/SP.J.1146.2010.01003.
    马原, 吕群波, 刘扬阳. 基于主成分变换的图像稀疏度估计方法[J]. 物理学报, 2013, 62(20): 204202-1-204202-11. doi: 10.7498/aps.62.204202.
    MA Yuan, L Qunbo, and LIU Yangyang. Image sparsity evaluation based on principle component analysis[J]. Acta Physica Sinica, 2013, 62(20): 204202-1-204202-11. doi: 10.7498/aps.62.204202.
    孙韶媛, 李琳娜, 赵海涛. 采用KPCA和BP神经网络的单目车载红外图像深度估计[J]. 红外与激光工程, 2013, 42(9): 2348-2352.
    SUN Shaoyuan, LI Linna, and ZHAO Haitao. Depth estimation from monocular vehicle infrared images based on KPCA and BP neural network[J]. Infrared and Laser Engineering, 2013, 42(9): 2348-2352.
    ZHENG W, LAI J, and YUEN P C. Penalized preimage learning in kernel principal component analysis[J]. IEEE Transactions on Neural Networks, 2010, 21(4): 551-570.
    ZHANG L M, QIAO L S, and CHEN S C. Graph-optimized locality preserving projections[J]. Pattern Recognition, 2010, 43(6): 1993-2002.
    张志伟, 杨帆, 夏克文, 等. 一种有监督的LPP算法及其在人脸识别中的应用[J]. 电子与信息学报, 2008, 30(3): 539-541.
    ZHANG Zhiwei, YANG Fan, XIA Kewen, et al. A supervised LPP algorithm and its application to face recognition[J]. Journal of Electronics Information Technology, 2008, 30(3): 539-541.
    于攀, 叶俊勇. 基于谱回归和核空间最近邻的基因表达数据分类[J]. 电子学报, 2011, 39(8): 1955-1960.
    YU Pan and YE Junyong. Spectral regression and kernel space K-nearest neighbor for classification of gene expression data[J]. Acta Electronica Sinica, 2011, 39(8): 1955-1960.
    NARNEET D and BILL T. Histograms of oriented gradients for human detection[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, San Diego, 2005: 886-893.
    SU X, LIN W, ZHENG X, et al. A new local-main gradient orientation HOG and contour differences based algorithm for object classification[C]. IEEE International Symposium on Circuits and Systems, Beijing, 2013: 2892-2895.
    罗会兰, 钟宝康, 孔繁胜. 带权分块压缩感知的预测目标跟踪算法[J]. 电子与信息学报, 2015, 37(5): 1160-1166. doi: 10.11999/JEIT140997.
    LUO Huilan, ZHONG Baokang, and KONG Fansheng. Tracking using weighted block compressed sensing and location prediction[J]. Journal of Electronics Information Technology, 2015, 37(5): 1160-1166. doi: 10.11999/ JEIT140997.
    韩贵金, 朱虹. 基于HOG和颜色特征融合的人体姿态估计[J]. 模式识别与人工智能, 2014, 27(9): 769-777.
    HAN Guijin and ZHU Hong. Human pose estimation based on fusion of HOG and color feature[J]. Pattern Recognition and Artificial Intelligence, 2014, 27(9): 769-777.
    宋丹, 唐林波, 赵保军. 基于仿射梯度方向直方图特征的目标识别算法[J]. 电子与信息学报, 2013, 35(6): 1428-1434. doi: 10.3724/SP.J.1146.2012.01241.
    SONG Dan, TANG Linbo, and ZHAO Baojun. The object recognition algorithm based on affine histogram of oriented gradient[J]. Journal of Electronics Information Technology, 2013, 35(6): 1428-1434. doi: 10.3724/SP.J.1146.2012.01241.
    姜伟, 张晶, 扬炳儒. 自适应正则化核二维判别分析[J]. 模式识别与人工智能, 2014, 27(12): 1089-1097.
    JIANG Wei, ZHANG Jing, and YANG Bingru. Adaptive regularization based kernel two dimensional discriminant analysis[J]. Pattern Recognition and Artificial Intelligence, 2014, 27(12): 1089-1097.
    孙丽娟. 基于谱回归的人脸识别的研究[D]. [硕士论文], 重庆大学, 2009.
    SUN Lijuan. Research on the face recognition based on spectral regression[D]. [Master dissertation], Chongqing University, 2009.
    潘炜深, 金连文, 冯子勇. 基于多尺度梯度及深度神经网络的汉字识别[J]. 北京航空航天大学学报, 2015, 41(4): 751-756. doi: 10.13700/j.bh. 1001-5965.2014.0499.
    PAN W S, JIN L W, and FENG Z Y. Recognition of Chinese characters based on multi-scale gradient and deep neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(4): 751-756. doi: 10.13700/j.bh. 1001-5965.2014.0499.
    张海燕, 李欣, 田书峰. 基于BP神经网络的仿真线设计及其FPGA实现[J]. 电子与信息学报, 2007, 29(5): 1262-1265.
    ZHANG Haiyan, LI Xin, and TIAN Shufeng. Simulation line design and its FPGA realization based on BP neural network[J]. Journal of Electronics Information Technology, 2007, 29(5): 1262-1265.
    孙琼, 王光飞. 基于BP神经网络与HMM的驾驶状态识别[C]. 2014中国汽车工程学会年会, 上海, 2014: 430-432.
    SUN Qiong and WANG Guangfei. Driving state recognition based on BP neural network and HMM[C]. 2014 SAE-China Congress Exhibition, Shanghai, 2014: 430-432.
  • 加载中
计量
  • 文章访问数:  1531
  • HTML全文浏览量:  126
  • PDF下载量:  672
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-29
  • 修回日期:  2015-11-09
  • 刊出日期:  2016-04-19

目录

    /

    返回文章
    返回