BOTTOU L and BOUSQUET O. The tradeoffs of large scale learning[C]. Proceedings of Advances in Neural Information Processing Systems, Cambridge, 2008: 151-154.
|
LIN C Y, TSAI C H, LEE C P, et al. Large-scale logistic regression and linear support vector machines using Spark[C]. Proceedings of 2014 IEEE International Conference on Big Data, Washington DC, 2014: 519-528. doi: 10.1109/BigData. 2014.7004269.
|
AGERRI R, ARTOLA X, BELOKI Z, et al. Big data for natural language processing: A streaming approach[J]. Knowledge-Based Systems, 2015, 79: 36-42. doi: 10.1016/ j.knosys.2014.11.007.
|
DARROCH J N and RATCLIFF D. Generalized iterative scaling for log-linear models[J]. The Annals of Mathematical Statistics, 1972, 43(5): 1470-1480. doi: 10.1214/aoms/ 1177692379.
|
DELLA P S, DELLA P V, and LAFFERTY J. Inducing features of random fields[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(4): 380-393. doi: 10.1109/34.588021.
|
GOODMAN J. Sequential conditional generalized iterative scaling[C]. Proceedings of the 40th annual meeting of the association of computational linguistics, Philadelphia, 2002: 9-16. doi: 10.3115/1073083.1073086.
|
JIN R, YAN R, ZHANG J, et al. A faster iterative scaling algorithm for conditional exponential model[C]. Proceedings of the 20th International Conference on Machine Learning, New York, 2003: 282-289.
|
HUANG F L, HSIEN C J, CHANG K W, et al. Iterative scaling and coordinate descent methods for maximum entropy[J]. Journal of Machine Learning Research, 2010, 11(2): 815-848.
|
KOMAREK P and MOORE A W. Making logistic regression a core data mining tool: a practical investigation of accuracy, speed, and simplicity[R]. Technical report TR-05-27, Robotics Institute of Carnegie Mellon University, Pittsburgh, 2005.
|
LIN C J, WENG R C, and KEERTHI S S. Trust region Newton method for large-scale logistic regression[J]. Journal of Machine Learning Research, 2008, 9(4): 627-650.
|
KEERTHI S S, DUAN K B, SHEVADE S K, et al. A fast dual algorithm for kernel logistic regression[J]. Machine Learning, 2005, 61(1-3): 151-165. doi: 10.1007/s10994- 005-0768-5.
|
PLATT J C. Fast training of support vector machines using sequential minimal optimization[C]. Proceedings of Advances in Kernel Methods: Support Vector Learning, Cambridge, 1999: 185-208.
|
YU H F, HUANG F L, and LIN C J. Dual coordinate descent methods for logistic regression and maximum entropy models[J]. Machine Learning, 2011, 85(1/2): 41-75. doi: 10.1007/s10994-010-5221-8.
|
顾鑫, 王士同, 许敏. 基于多源的跨领域数据分类快速新算法[J]. 自动化学报, 2014, 40(3): 531-547. doi: 10.3724/SP.J. 1004.2014.00531.
|
GU X, WANG S T, and XU M. A new cross-multidomain classification algorithm and its fast version for large datasets[J]. Acta Automatica Sinica, 2014, 40(3): 531-547. doi: 10.3724/SP.J.1004.2014.00531.
|
顾鑫, 王士同. 大样本多源域与小目标域的跨领域快速分类学习[J]. 计算机研究与发展, 2014, 51(3): 519-535. doi: 10.7544/issn1000-1239.2014.20120652.
|
GU X and WANG S T. Fast cross-domain classification method for large multisources/small target domains[J]. Journal of Computer Research and Development, 2014, 51(3): 519-535. doi: 10.7544/issn1000-1239.2014.20120652.
|
张学峰, 陈渤, 王鹏辉, 等. 一种基于Dirichelt过程隐变量支撑向量机模型的目标识别方法[J]. 电子与信息学报, 2015, 37(1): 29-36. doi: 10.11999/JEIT140129.
|
ZHANG X F, CHEN B, WANG P H, et al. A target recognition method based on dirichlet process latent variable support vector machine model[J]. Journal of Electronics Information Technology, 2015, 37(1): 29-36. doi: 10.11999/ JEIT140129.
|
及歆荣, 侯翠琴, 侯义斌. 无线传感器网络下线性支持向量机分布式协同训练方法研究[J]. 电子与信息学报, 2015, 37(3): 708-714. doi: 10.11999/JEIT140408.
|
JI X R, HOU C Q, and HOU Y B. Research on the distributed training method for linear SVM in WSN[J]. Journal of Electronics Information Technology, 2015, 37(3): 708-714. doi: 10.11999/JEIT140408.
|
高发荣, 王佳佳, 席旭刚, 等. 基于粒子群优化-支持向量机方法的下肢肌电信号步态识别[J]. 电子与信息学报, 2015, 37(5): 1154-1159. doi: 10.11999/JEIT141083.
|
GAO F R, WANG J J, XI X G, et al. Gait recognition for lower extremity electromyographic signals based on PSO- SVM method[J]. Journal of Electronics Information Technology, 2015, 37(5): 1154-1159. doi: 10.11999/ JEIT141083.
|
HSIEH C J, CHANG K W, LIN C J, et al. A dual coordinate descent method for large-scale linear SVM[C]. Proceedings of the 25th International Conference on Machine Learning, New York, 2008: 408-415. doi: 10.1145/1390156.1390208.
|
CHEN P H, LIN C J, and SCHLKOPF B. A tutorial on v-support vector machines[J]. Applied Stochastic Models in Business and Industry, 2005, 21(2): 111-136. doi: 10.1002/ asmb.537.
|
PENG X J, CHEN D J, and KONG L Y. A clipping dual coordinate descent algorithm for solving support vector machines[J]. Knowledge-Based Systems, 2014, 71: 266-278. doi: 10.1016/j.knosys.2014.08.005.
|
TSAI C H, LIN C Y, and LIN C J. Incremental and decremental training for linear classification[C]. Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, 2014: 343-352. doi: 10.1145/2623330.2623661.
|