ZHANG X. Reversible data hiding in encrypted image[J]. IEEE Signal Processing Letters, 2011, 18(4): 255-258.
|
TIAN J. Reversible data embedding using a difference expansion[J]. IEEE Transactions on Circuits Systems Video Technology, 2003, 13(8): 890-896.
|
DRAGOI L and COLTUC D. Local-prediction-based difference expansion reversible watermarking[J]. IEEE Transactions on Image Processing, 2014, 23(4): 1779-1790.
|
CACIULA I and COLTUC D. Improved control for low bit-rate reversible watermarking[C]. IEEE International Conference on Acoustics Speech and Signal Processing, Florence, Italy, 2014: 7425-7429.
|
ZHANG W, HU X, LI X, et al. Recursive histogram modification: establishing equivalency between reversible data hiding and lossless data compression[J]. IEEE Transactions on Image Processing, 2013, 2(7): 2775-2785.
|
JARALI A and RAO J. Unique LSB compression data hiding method[J]. International Journal of Emerging Science and Engineering, 2013, 2(3): 17-21.
|
LIAN S, LIU Z, REN Z, et al. Commutative encryption and watermarking in video compression[J]. IEEE Transactions on Circuits and Systems Video Technology, 2007, 17(6): 774-778.
|
CANCELLARO M, BATTISTI F, CARLI M, et al. A commutative digital image watermarking and encryption method in the tree structured Haar transform domain[J]. Signal Processing: Image Communication, 2011, 26(1): 1-12.
|
KURIBAYASHI M and TANAKA H. Fingerprinting protocol for images based on additive homomorphic property[J]. IEEE Transactions on Image Processing, 2005, 14(12): 2129-2139.
|
MEMON N and WONG P W. A buyer-seller watermarking protocol[J]. IEEE Transactions on Image Processing, 2001, 10(4): 643-649.
|
ZHANG X. Reversible data hiding in encrypted image[J]. IEEE Signal Processing Letters, 2011, 18(4): 255-258.
|
MA K, ZHANG W, ZHAO X, et al. Reversible data hiding in encrypted images by reserving room before encryption[J]. IEEE Transactions on Information Forensics and Security, 2013, 8(3): 553-562.
|
YU J, ZHU G, LI X, et al. Digital Forensics and Watermarking: An Improved Algorithm for Reversible Data Hiding in Encrypted Image[M]. Berlin Heidelberg, Springer- Verlag, 2014: 384-394.
|
LI M, XIAO D, PENG Z, et al. A modified reversible data hiding in encrypted images using random diffusion and accurate prediction[J]. ETRI Journal, 2014, 36(2): 325-328.
|
WU X and SUN W. High-capacity reversible data hiding in encrypted images by prediction error[J]. Signal Processing, 2014, 104(11): 387-400
|
陈嘉勇, 王超, 张卫明, 等. 安全的密文域图像隐写术[J]. 电子与信息学报, 2012, 34(7): 1721-1726. doi: 10.3724/SP.J. 1146.2011.01240.
|
WANG J H, WANG C, ZHANG W M et al. A secure image steganographic method in encrypted domain[J]. Journal of Electronics Information Technology, 2012, 34(7): 1721-1726. doi: 10.3724/SP.J.1146.2011.01240.
|
REGEV O. On lattices, learning with errors, random linear codes and cryptography[C]. Proceedings of the 37th Annual ACM Symposium on Theory of Couputing, New York, USA, 2005: 84-93.
|
余位驰. 格基规约理论及其在密码设计中的应用[D]. [博士论文], 成都: 西南交通大学, 2005.
|
GORDON R D. Values of Mills ratio of area to bounding ordinate and of the normal probability integral for large values of the argument[J]. The Annals of Mathematical Statistics, 1941(12): 364-366
|
LYUBASHEVSKY V, PEIKERT C, and REGEV O. On ideal lattices and learning with errors over rings[C]: 29th Annual International Conference on the Theory and Applications of Cryptographic Techniques. French Riviera, 2010: 1-23.
|
ZHANG X. Separable reversible data hiding in encrypted image[J]. IEEE Transactions on Information Forensics and Security. 2012, 7(2): 826-832.
|
ZHANG X, QIAN Z, FENG G, et al. Efficient reversible data hiding in encrypted image[J]. Journal of Visual Communication and Image Representation, 2014, (25)2: 322-328.
|
AJTAI M. Generating hard instances of lattice problems[C]. Complexity of Computations and Proofs, Dept. Math., Seconda University Napoli, Caserta, Italy, 2004: 1-32.
|
吴立强. 基于格的密码体制研究[D]. [硕士论文], 西安: 武警工程大学, 2012.
|