高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于LWE的密文域可逆信息隐藏

张敏情 柯彦 苏婷婷

张敏情, 柯彦, 苏婷婷. 基于LWE的密文域可逆信息隐藏[J]. 电子与信息学报, 2016, 38(2): 354-360. doi: 10.11999/JEIT150702
引用本文: 张敏情, 柯彦, 苏婷婷. 基于LWE的密文域可逆信息隐藏[J]. 电子与信息学报, 2016, 38(2): 354-360. doi: 10.11999/JEIT150702
ZHANG Minqing, KE Yan, SU Tingting. Reversible Steganography in Encrypted Domain Based on LWE[J]. Journal of Electronics & Information Technology, 2016, 38(2): 354-360. doi: 10.11999/JEIT150702
Citation: ZHANG Minqing, KE Yan, SU Tingting. Reversible Steganography in Encrypted Domain Based on LWE[J]. Journal of Electronics & Information Technology, 2016, 38(2): 354-360. doi: 10.11999/JEIT150702

基于LWE的密文域可逆信息隐藏

doi: 10.11999/JEIT150702
基金项目: 

国家自然科学基金(61379152, 61272492)

Reversible Steganography in Encrypted Domain Based on LWE

Funds: 

The National Natural Science Foundation of China (61379152, 61272492)

  • 摘要: 该文提出了一种基于LWE(Learning With Errors)算法的密文域可逆隐写方案,利用LWE公钥密码算法对数据加密,用户在密文中嵌入隐藏信息,对于嵌入信息后的密文,用户使用隐写密钥可以有效提取隐藏信息,使用解密密钥可以无差错恢复出加密前数据实现了提取过程与解密过程的可分离。通过推导方案在解密与提取信息过程中出错的概率,得到直接影响方案正确性的参数为所选噪声的标准差,实验获得并验证了标准差的合理取值区间;通过推导嵌入后密文的分布函数,分析密文统计特征的变化情况,论证了嵌入密文的隐藏信息的不可感知性。该方案是在密文域进行的可逆隐写,与原始载体无关,适用于文本、图片、音频等各类载体。实验仿真结果表明该方案不仅能够保证可逆隐写的可靠性与安全性,而且1 bit明文在密文域最大可负载1 bit隐藏信息。
  • ZHANG X. Reversible data hiding in encrypted image[J]. IEEE Signal Processing Letters, 2011, 18(4): 255-258.
    TIAN J. Reversible data embedding using a difference expansion[J]. IEEE Transactions on Circuits Systems Video Technology, 2003, 13(8): 890-896.
    DRAGOI L and COLTUC D. Local-prediction-based difference expansion reversible watermarking[J]. IEEE Transactions on Image Processing, 2014, 23(4): 1779-1790.
    CACIULA I and COLTUC D. Improved control for low bit-rate reversible watermarking[C]. IEEE International Conference on Acoustics Speech and Signal Processing, Florence, Italy, 2014: 7425-7429.
    ZHANG W, HU X, LI X, et al. Recursive histogram modification: establishing equivalency between reversible data hiding and lossless data compression[J]. IEEE Transactions on Image Processing, 2013, 2(7): 2775-2785.
    JARALI A and RAO J. Unique LSB compression data hiding method[J]. International Journal of Emerging Science and Engineering, 2013, 2(3): 17-21.
    LIAN S, LIU Z, REN Z, et al. Commutative encryption and watermarking in video compression[J]. IEEE Transactions on Circuits and Systems Video Technology, 2007, 17(6): 774-778.
    CANCELLARO M, BATTISTI F, CARLI M, et al. A commutative digital image watermarking and encryption method in the tree structured Haar transform domain[J]. Signal Processing: Image Communication, 2011, 26(1): 1-12.
    KURIBAYASHI M and TANAKA H. Fingerprinting protocol for images based on additive homomorphic property[J]. IEEE Transactions on Image Processing, 2005, 14(12): 2129-2139.
    MEMON N and WONG P W. A buyer-seller watermarking protocol[J]. IEEE Transactions on Image Processing, 2001, 10(4): 643-649.
    ZHANG X. Reversible data hiding in encrypted image[J]. IEEE Signal Processing Letters, 2011, 18(4): 255-258.
    MA K, ZHANG W, ZHAO X, et al. Reversible data hiding in encrypted images by reserving room before encryption[J]. IEEE Transactions on Information Forensics and Security, 2013, 8(3): 553-562.
    YU J, ZHU G, LI X, et al. Digital Forensics and Watermarking: An Improved Algorithm for Reversible Data Hiding in Encrypted Image[M]. Berlin Heidelberg, Springer- Verlag, 2014: 384-394.
    LI M, XIAO D, PENG Z, et al. A modified reversible data hiding in encrypted images using random diffusion and accurate prediction[J]. ETRI Journal, 2014, 36(2): 325-328.
    WU X and SUN W. High-capacity reversible data hiding in encrypted images by prediction error[J]. Signal Processing, 2014, 104(11): 387-400
    陈嘉勇, 王超, 张卫明, 等. 安全的密文域图像隐写术[J]. 电子与信息学报, 2012, 34(7): 1721-1726. doi: 10.3724/SP.J. 1146.2011.01240.
    WANG J H, WANG C, ZHANG W M et al. A secure image steganographic method in encrypted domain[J]. Journal of Electronics Information Technology, 2012, 34(7): 1721-1726. doi: 10.3724/SP.J.1146.2011.01240.
    REGEV O. On lattices, learning with errors, random linear codes and cryptography[C]. Proceedings of the 37th Annual ACM Symposium on Theory of Couputing, New York, USA, 2005: 84-93.
    余位驰. 格基规约理论及其在密码设计中的应用[D]. [博士论文], 成都: 西南交通大学, 2005.
    GORDON R D. Values of Mills ratio of area to bounding ordinate and of the normal probability integral for large values of the argument[J]. The Annals of Mathematical Statistics, 1941(12): 364-366
    LYUBASHEVSKY V, PEIKERT C, and REGEV O. On ideal lattices and learning with errors over rings[C]: 29th Annual International Conference on the Theory and Applications of Cryptographic Techniques. French Riviera, 2010: 1-23.
    ZHANG X. Separable reversible data hiding in encrypted image[J]. IEEE Transactions on Information Forensics and Security. 2012, 7(2): 826-832.
    ZHANG X, QIAN Z, FENG G, et al. Efficient reversible data hiding in encrypted image[J]. Journal of Visual Communication and Image Representation, 2014, (25)2: 322-328.
    AJTAI M. Generating hard instances of lattice problems[C]. Complexity of Computations and Proofs, Dept. Math., Seconda University Napoli, Caserta, Italy, 2004: 1-32.
    吴立强. 基于格的密码体制研究[D]. [硕士论文], 西安: 武警工程大学, 2012.
  • 加载中
计量
  • 文章访问数:  1583
  • HTML全文浏览量:  177
  • PDF下载量:  964
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-08
  • 修回日期:  2015-09-11
  • 刊出日期:  2016-02-19

目录

    /

    返回文章
    返回