高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类推广的二元Legendre-Sidelnikov序列的自相关分布

柯品惠 叶智钒 常祖领

柯品惠, 叶智钒, 常祖领. 一类推广的二元Legendre-Sidelnikov序列的自相关分布[J]. 电子与信息学报, 2016, 38(2): 303-309. doi: 10.11999/JEIT150687
引用本文: 柯品惠, 叶智钒, 常祖领. 一类推广的二元Legendre-Sidelnikov序列的自相关分布[J]. 电子与信息学报, 2016, 38(2): 303-309. doi: 10.11999/JEIT150687
KE Pinhui, YE Zhifan, CHANG Zuling. Autocorrelation Distribution of Binary Generalized Legendre-Sidelnikov Sequences[J]. Journal of Electronics & Information Technology, 2016, 38(2): 303-309. doi: 10.11999/JEIT150687
Citation: KE Pinhui, YE Zhifan, CHANG Zuling. Autocorrelation Distribution of Binary Generalized Legendre-Sidelnikov Sequences[J]. Journal of Electronics & Information Technology, 2016, 38(2): 303-309. doi: 10.11999/JEIT150687

一类推广的二元Legendre-Sidelnikov序列的自相关分布

doi: 10.11999/JEIT150687
基金项目: 

福建师范大学网络与信息安全关键理论和技术校创新团队(IRTL1207),福建省自然科学基金(2015J01237),国家自然科学基金联合基金(U1304604)

Autocorrelation Distribution of Binary Generalized Legendre-Sidelnikov Sequences

Funds: 

Fujian Normal University Innovative Research Team (IRTL1207), Natural Science Foundation of Fujian Province (2015J01237), The Joint Funds of the National Natural Science Foundation of China (U1304604)

  • 摘要: 推广的Legendre-Sidelnikov序列较之原序列有更好的平衡性质,但是关于该序列的周期自相关函数,迄今仅知道一些特殊移位的情形。该文利用有限域上特征和的相关性质,给出了推广的二元Legendre-Sidelnikov序列的自相关函数的完整分布。结果表明当p3(mod 4)且qp 时,推广的Legendre-Sidelnikov序列较之原序列有更好的周期自相关函数的分布。
  • GOLOMB G and GONG G. Signal Designs with Good Correlations: Forwireless Communications, Cryptography and Radar Applications[M]. Cambridge, U.K.: Cambridge University Press, 2005: 174-175.
    ARASU K T, DING C, HELLESETH T, et al. Almost difference sets and their sequences with optimal autocorrelation[J]. IEEE Transactions on Information Theory, 2001, 47(7): 2934-2943.
    陈晓玉, 许成谦, 李玉博. 新的完备高斯整数序列的构造方法[J]. 电子与信息学报, 2014, 36(9): 2081-2085. doi: 10.3724/SP. J.1146.2103.01697.
    CHEN Xiaoyu, XU Chengqian, and LI Yubo. New constructions of perfect Gaussian integer sequences[J]. Journal of Electronics Information Technology, 2014, 36 (9): 2081-2085. doi: 10.3724/SP.J.1146.2103.01697.
    李瑞芳, 柯品惠. 一类新的周期为2pq的二元广义分圆序列的线性复杂度[J]. 电子与信息学报, 2014, 36(3): 650-654. doi: 10.3724/SP.J.1146.2103.00751.
    LI Ruifang and KE Pinhui. The linear complexity of a new class of generalized cyclotomic sequence with period 2pq[J]. Journal of Electronics Information Technology, 2014, 36 (3): 650-654. doi: 10.3724/SP.J.1146.2103.00751.
    DING C, HELLESETH T, and SAN W. On the linear complexity of Legendre sequences[J]. IEEE Transactions on Information Theory, 1998, 44(3): 1276-1278.
    DING C. Pattern distributions of Legendre sequences[J]. IEEE Transactions on Information Theory, 1998, 44(4): 1693-1698.
    SIDELNIKOV V M. Some k-valued pseudo-random sequences and nearly equidistant codes[J]. Problems of Information Transmission, 1969, 5(1): 12-16.
    岳曌, 高军涛, 谢佳. 双素数Sidelnikov序列的自相关函数[J]. 电子与信息学报, 2013, 35 (11): 2602-2607. doi: 10.3724/ SP.J.1146.2103.00147.
    YUE Zhao, GAO Juntao, and XIE Jia. Autocorrelation of the two-prime Sidelnikov sequence[J]. Jounal of Electronics Information Technology, 2013, 35(11): 2602-2607. doi: 10.3724/SP.J.1146.2103.00147.
    KIM Youngtae, SONG Minkyu, KIM Daesan, et al. Properties and crosscorrelation of decimated sidelnikov sequences[J]. IEICE Transactions on Fundamentals, 2014,
    KIM Youngtae, KIM Daesan, and SONG Hongyeop. New M-Ary sequence families with low correlation from the array structure of sidelnikov sequences[J]. IEEE Transactions on Information Theory, 2015, 61(1): 655-670.
    SU M and WINTERHOF A. Autocorrelation of Legendre- Sidelnikov sequences[J]. IEEE Transactions on Information Theory, 2010, 56(4): 1714-1718.
    SU M. On the linear complexity of Legendre-Sidelnikov sequences[J]. Design Codes and Cryptography, 2015, 74(3): 703-717.
    SU M and WINTERHOF A. Correlation measure of order k and linear complexity profile of legendre-sidelnikov sequences[C]. Proceedings of Fifth International Workshop on Signal Design and its Applications in Communications, Guilin, China, 2011: 6-8.
    SU M. ON the d-ary Generalized Legendre-Sidelnikov Sequence[J]. LNCS, 2012, 7280: 233-244.
    YAN T, LIU H, and SUN Y. Autocorrelation of modified Legendre-Sidelnikov sequences[J]. IEICE Transactions on Fundamentals, 2015, E98-A(2): 771-775.
    BURTON D M. Elementary Number Theory[M]. Maidenhead: UK, McGraw-Hill Education Press, 1998: 92-105.
    LIDL R and NIEDERREITER H. Finite Fields[M]. MA: Addision-Wesley, 1983: 217-225.
    -A(12): 2562-2566.
  • 加载中
计量
  • 文章访问数:  1122
  • HTML全文浏览量:  150
  • PDF下载量:  307
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-08
  • 修回日期:  2015-09-11
  • 刊出日期:  2016-02-19

目录

    /

    返回文章
    返回